
Project number: 2023-1-PL01-KA220-SCH-000154043

IoT4Schools
“Bringing the Internet of Things in school education as a

tool to address 21st century challenges”

Smart waste bins: how to improve waste management in

smart cities?

Worksheet

Authors: Angelika Tefelska, Dariusz Tefelski

Organization: Warsaw University of Technology, Faculty of Physics

License: CC BY-NC 4.0 LEGAL CODE, Attribution-NonCommercial 4.0 International

The European Commission's support to produce this publication does not constitute an endorsement
of the contents, which reflect the views only of the authors, and the Commission cannot be held
responsible for any use which may be made of the information contained therein.

Project number: 2023-1-PL01-KA220-SCH-000154043

Team:………………………………………………………..

1. Time for a brainstorming session

What do you know about waste management in the city? (collection methods, processing,
recycling statistics, fuel consumption statistics for garbage trucks) Search for information on this
topic.

…….

…….

…….

…….

…….

…….

…….

…….

How can the current waste management system be improved? How can the collection of waste
from houses/apartments be improved?

…….

…….

…….

…….

…….

…….

If you want to build a smart trash can, how should it work?

…….

…….

…….

…….

…….

Project number: 2023-1-PL01-KA220-SCH-000154043

2. Time to design your own smart waste bin

Think about what a smart waste bin should look like, whose task will be to measure the level of fullness of
a waste bin. For this purpose, we will use an ultrasonic distance sensor that measures the distance from
obstacles. Where should this sensor be placed in the waste bin to obtain information about fullness? In
addition, the project will use three LED diodes (red, yellow and green). Where will you place these diodes
on the waste bin so that the user would know how full the bin is? At what values of bin fullness will the
individual diodes light up? Is sending data about the level of fullness of the waste bin to the cloud a good
solution?

…….

…….

…….

…….

…….

…….

…….

…….

…….

…….

…….

3. Time for some warm-up activities

Before we move on to building a smart waste bin, let's get to know the elements we'll be using. To do this,
we'll do two short warm-up tasks. The first one is about traffic lights. The second one concerns the
operation of the ultrasonic distance sensor. First, build the electronic circuit according to the drawing
below. This circuit will be used for two warm-up tasks.

Project number: 2023-1-PL01-KA220-SCH-000154043

3.1 First warm-up tasks: traffic lights

Each program written in MicroPython for programming the Raspberry Pi Pico looks like this:

At the beginning we add the machine library, which contains basic functions for operating the
microcontroller. Then we need to add instructions that are to be executed only once at the very beginning,
such as configuration, creating variables or creating our own functions. Then we always have an infinite
loop, in which we place instructions that will be repeated over and over.

The basic functions necessary to complete the exercise are:

• machine.Pin(pin number, machine.Pin.IN or machine.Pin.OUT) - configures whether a given
pin should be an input (machine.Pin.IN) or output (machine.Pin.OUT). Input pins are used when
we want to read data from an element connected to a pin, e.g. when we have a button connected,
we read whether it was pressed (value 1) or not (value 0). Output pins are used when we want to
control a given element connected to a pin, e.g. an LED diode, whether it should be on (value 1)
or off (value 0).

• value(0 or 1) - function for setting the value on a given pin.

• utime.sleep(time in seconds) - function that suspends program execution for a given time. To
use it, you must include the utime library: import utime.

So if we wanted the LED connected to pin GP15 to blink every 1 second, the code would look like this:

Open the Thonny editor and then select "MicroPython (Raspberry Pi Pico)" as shown in the picture. After
connecting to the board correctly, the green Run button should be active (not grayed out). If it is grayed
out, select "MicroPython (Raspberry Pi Pico)" again.

Project number: 2023-1-PL01-KA220-SCH-000154043

Now try to create a program that will simulate traffic lights.

3.2 Warm-up task no. 2: ultrasonic distance sensor

The HC-SR04 ultrasonic distance sensor allows you to measure the distance from an obstacle. The
measurement idea is shown in the figure below:

Source: https://www.researchgate.net/figure/ A-block-diagram-of-Ultrasonic-sensor-working-
principles_fig5_ 344385811

Project number: 2023-1-PL01-KA220-SCH-000154043

To measure, according to the sensor documentation (see the figure below), set the signal low on the
trigger for a short time, e.g. 2μs. Then set the high signal for 10μs. To generate delays in microseconds,
use the function: utime.sleep_us(). In the next step, set the low signal on the trigger.

Source: https://www.electronicoscaldas.com/datasheet/HC-SR04.pdf

Create a program that reads the measured distance from an ultrasonic distance sensor and displays it in
the terminal. To do this:

1. Add the machine and utime libraries.

2. Configure the pin to which the trigger is connected as an output.

3. Configure the pin to which the echo is connected as an input.

4. In the while loop, set the value of the trigger pin to 0.

5. Wait 2 μs (utime.sleep_us() function).

6. Set the value of the trigger pin to 1.

7. Wait 10 μs.

8. Set the value of the trigger pin to 0.

9. Now we need to measure how long the high signal on the echo pin lasts, because the duration of the
signal on the echo pin is related to distance. To do this, we will use the utime.ticks_us() function, which
measures how much time has passed in μs since the program was started. First, we will create a while
loop that will execute as long as the signal is low. Inside, we will place the tick_us() function. This way, we
will get information about when the signal was last low. Add this code snippet to your program:

 while echo.value()==0:

 signal_off = utime.ticks_us()

10. Similarly, measure when the signal was last high and save the value to a variable named e.g.
signal_on.

11. The difference between the time of the last occurrence of the high and low signal is the duration of the
high pulse on the echo pin. How do we translate the pulse duration into distance? At the beginning, a

https://www.electronicoscaldas.com/datasheet/HC-SR04.pdf

Project number: 2023-1-PL01-KA220-SCH-000154043

sound wave is emitted, which reflects from the object and returns to the sensor. Therefore, in the
measured time (t), the wave travels twice the distance between the sensor and the object and moves at a
speed of about 340 m/s (the speed of sound in air). Therefore, we can write the equation for the speed:

Hence, the obtained pulse duration should be divided by 58 to get the distance in centimeters. Add the
following lines to the program:

diff = signal_on-signal_off

distance = diff/58.0

print("Distance="+str(distance))

Now you can test the operation of the program. If you have difficulty reading data because it is displayed
too quickly, you can add a small delay to the print function.

4. Smart waste bin – level 1

Now create a program in which you will use the skills you have acquired during the warm-up tasks and
measure the fill level of the waste bin. Display the fill level on the LEDs according to the percentage
ranges of the bin occupancy that you assumed at the stage of designing the waste bin.

Create a waste bin from an unused shipping/shoe box and test how your bin works.

5. Smart waste bin – level 2

Now let's modify the trash can to be even smarter. To do this, we will send data to the cloud about the
fullness of the trash can and its location. This data can later be used to create an algorithm that develops
a route for the garbage truck to collect trash only from those locations where the bins are full, thus
minimizing the carbon footprint. For this purpose, we will use the Adafruit IO cloud.

First, you need to create a free account at https://io.adafruit.com . Next, you will want to send two pieces
of data: garbage container filling and location to the cloud. To do this, you need to create two feeds.
Feeds are objects that store data. To create a feed, go to the "Feed" tab and select the "New Feed"
button.

v=
2d
t

d=v⋅
t
2
=0.034

cm
μ s

⋅
t
2
≈
t [μ s]
58

https://io.adafruit.com/

Project number: 2023-1-PL01-KA220-SCH-000154043

Then a window will appear where you need to enter the feed name, e.g. Filling or Location.

Create two feeds. Once you do that, you should see the feeds you created on your page, similar to the
screenshot below:

The next step is to create a dashboard. To do this, select the "Dashboards" tab and then "New
Dashboard":

A window will pop up where you should enter the selected dashboard name. Then on the right side, select
the settings symbol and choose "Create New Block".

Project number: 2023-1-PL01-KA220-SCH-000154043

Adafruit IO has various blocks available for displaying data (text boxes, gauges, charts, maps, etc.). In our
case, let's choose a gauge and a map:

Then a window will pop up asking which feed we want to connect the block to. Select the feed defining
the waste bin filling to the indicator and the feed defining the location to the map. Then select the settings
icon again and choose "Edit Layout". Arrange the blocks on the screen as you see fit. You can also
enlarge and reduce the blocks. An example of the appearance is shown in the screenshot below:

Project number: 2023-1-PL01-KA220-SCH-000154043

Now let's go to the Thonny editor and install the umqtt.simple library. To do this, select "Tools" and then
"Manage packages". A window will pop up where you should enter the name of the library you want to
install, in this case umqtt.simple:

When you click on the name of the found umqtt.simple library, a window with library data will open and
you will be able to install the library by clicking the Install button.

Now we can go back to our code and add the pieces necessary to send data to the cloud. To do this,
follow these steps:

1. Add the necessary libraries (network library and import symbol MQTTClient from umqtt.simple library):

2. Add a piece of code that will allow you to connect to your WIFI. Here you need to fill in lines 15-18.
First, enter the name of your WIFI and then the password.

Project number: 2023-1-PL01-KA220-SCH-000154043

The last two parameters are the data from Adafruit IO. Go back to the Adafruit website and click the key
symbol. When you do this, your login and key will appear. Copy this data to the program to lines 17-18:

3. Now we will use MQTT (Message Queuing Telemetry Transport), a lightweight communication protocol
based on the publish/subscribe model. It was designed specifically for sending data in resource-
constrained environments, such as IoT (Internet of Things) devices. To do this, use the code below,
changing only the feed names in lines 33-34. The example uses feeds named: "Filling" and "Location".
Replace them with your own. Just remember to leave /csv in the case of Location because when using
maps, you must provide data in csv format.

Project number: 2023-1-PL01-KA220-SCH-000154043

4. Now let's add functions to send data to the cloud:

The last step is to pass the measured occupancy and location to the function in while loop after your
code. You can read your location, for example, from Google maps and replace it in the "location" variable.

Test the smart waste bin. Remember to return to the Adafruit IO page on the dashboard you created to
see if you are sending your data to the cloud correctly.

Project number: 2023-1-PL01-KA220-SCH-000154043

6. Wrapping up: reflecting on functionality and possible
improvements

Do you think that using smart bins could improve waste collection and reduce the carbon footprint? In the
project, we did not optimize the route of garbage trucks, but you can imagine that there is a system that
reads data from the cloud from each bin and prepares an optimal route. . If you are interested in how to
make such an algorithm, you can familiarize yourself with the programs from the website:
https://colab.research.google.com/drive/1aOq9jRh6c6fhaw1ahe0a1-yKVdMnO613?usp=sharing%2F .

……..

……..

……..

……..

……..

What other changes can be made to make smart bins work even more efficiently?

……..

……..

……..

……..

……..

https://colab.research.google.com/drive/1aOq9jRh6c6fhaw1ahe0a1-yKVdMnO613?usp=sharing%2F

	Team:………………………………………………………..
	1. Time for a brainstorming session
	What do you know about waste management in the city? (collection methods, processing, recycling statistics, fuel consumption statistics for garbage trucks) Search for information on this topic.

	2. Time to design your own smart waste bin
	3. Time for some warm-up activities
	3.1 First warm-up tasks: traffic lights
	3.2 Warm-up task no. 2: ultrasonic distance sensor

	4. Smart waste bin – level 1
	5. Smart waste bin – level 2
	6. Wrapping up: reflecting on functionality and possible improvements

