
Technical guide about Raspberry Pi Pico and
microPython

Authors: 1Angelika Tefelska, 1Dariusz Tefelski
Contributors: 2Chrissa Papasarantou, 2Rene Alimisi

IoT4schools Consorcium:
1Warsaw University of Technology,
2EDUMOTIVA,

Project title: “Bringing the Internet of Things in school education as a tool to address 21st
century challenges”, project number: 2023-1-PL01-KA220-SCH-000154043, Erasmus+
KA220-SCH.

The European Commission’s support to produce this publication does not constitute an
endorsement of the contents, which reflect the views only of the authors, and the Com-
mission cannot be held responsible for any use which may be made of the information
contained therein.

License: CC BY-NC 4.0 LEGAL CODE, Attribution-NonCommercial 4.0 International

LaTeX template was taken from: https://www.latextemplates.com/template/legrand-orange-book

The chapter images generated with DALL-E, OpenAI.

https://www.latextemplates.com/template/legrand-orange-book

Contents

1 Introduction . 5

1.1 Raspberry Pi Pico board . 5
1.2 Installation . 7

2 Basic electronic components . 8

3 Introduction to MicroPython language 13

4 The digital signals . 19

4.1 Example 1: blinking LED project . 20
4.2 Example 2: LED turned on/off with push button 22
4.3 Example 3: Light switched on by a motion sensor 26
4.4 Pulse Width Modulation (PWM) . 28

5 The analog signals . 34

5.1 Example 5: temperature measurement . 34

6 Interrupts . 38

6.1 Example 6: Sound signals at traffic lights . 39

7 Sensors . 46

7.1 Example 7: parking sensor . 46
7.2 Example 8: GPS . 51
7.3 Example 9: Weather station . 54
7.4 Example 10: Indoor air quality measurement 57
7.5 Example 11: Temperature measurement using external A/D con-

verter . 61

4

7.6 Example 12: Temperature measurement using 1-wire bus 71

8 Actuators . 78

8.1 Example 13: Servo motor . 78
8.2 Example 14: Smart ventilation . 81

9 Wireless communication . 85

9.1 Example 15: Bluetooth module . 85
9.2 Example 16: Adafruit IO . 85

1. Introduction

This guide is an introduction to the Raspberry Pi Pico W board, which can be used in
Internet of Things (IoT) projects. The development of digitalization shows that we are
increasingly using smart solutions that improve our quality of life and allow us to save
resources such as electricity or water. Familiarizing yourself with the subject of IoT is
extremely important in the modern world. One of the boards that allows you to enter the
world of IoT technology is the Raspberry Pi Pico W, which is compact, easy to use and
cheap. Hence, this guide will focus on presenting the Raspberry Pi Pico W board and
the MicroPython language used to program it. The guide is dedicated to pupils, students,
teachers, educators and hobbyists who have not previously dealt with the Raspberry Pi
Pico W board. We encourage you to learn through practice, i.e., by performing sample
projects with a guide in parallel, which will allow you to quickly gain fluency in using the
board. Enjoy learning and have fun!

1.1 Raspberry Pi Pico board
In 2021, the Raspberry Pi Pico series boards were launched, which were a breakthrough
product offered by the Raspberry Pi Foundation. Previous versions of Raspberry Pi
boards were System-on-Chip (SoC), which were miniature computers. On the other
hand, the Raspberry Pi Pico series are a completely different type of boards - they are
based on microcontrollers and are a great alternative to Arduino boards. The heart of the
Raspberry Pi Pico board is the proprietary RP2040 system - a dual-core ARM Cortex
M0+ microcontroller operating at 133 MHz, equipped with 264 KB of SRAM and 2 MB
of Flash memory. The goal was to provide an efficient microcontroller with significant
computing power that would meet the expectations of hobbyists from around the world. In
addition to the excellent RP2040 system, it is worth noting that the board was equipped
with 26 General-Purpose Input/Output (GPIO) pins, including 16 PWM channels and
communication interfaces such as I2C, SPI, UART. If you are not familiar with the board
equipment mentioned, it does not matter, we will discuss all the elements later in the
guide. The layout of the mentioned elements on the Raspberry Pi Pico board is shown in
Figure 1.1.

6 Chapter 1. Introduction

Figure 1.1: The pinout of Raspberry Pi Pico. Source of image:
https://www.raspberrypi.com.

The Raspberry Pi Pico series consists of 4 small boards (not much larger than a
pendrive) shown in Figure 1.2.

Figure 1.2: The 4 version of Raspberry Pi Pico boards. Source of image:
https://www.raspberrypi.com.

The first board on the left is the Raspberry Pi Pico, the next board is the Raspberry Pi
Pico H, which differs only in that the pins are already soldered and dedicated connector

https://www.raspberrypi.com/documentation/microcontrollers/pico-series.html
https://www.raspberrypi.com/documentation/microcontrollers/pico-series.html

1.2 Installation 7

for debugging purposes is present. If you order the standard version of the Raspberry
Pi Pico, you will have to solder the pins yourself. If you have never soldered, do not
worry. On the Internet, you will find many example videos on how to solder pins, e.g.
https://www.youtube.com/watch?v=zbhOyCA_4lg. If, after all, you would prefer not to
solder pins, a better choice would be to choose boards marked with letter H. However keep
in mind, that you will not be able to solder pins for debug purposes to this board and need
to use dedicated connector (cable and connectors available with Raspberry Pi Debug probe
device). The third board from the left is the Raspberry Pi Pico W, which additionally has a
built-in Wi-Fi and Bluetooth module, which is extremely important in Internet of Things
(IoT) projects. In this guide, we will mainly focus on the Raspberry Pi Pico W version,
which will be necessary for IoT projects. The fourth board is the Raspberry Pi Pico WH,
which differs from the Raspberry Pi Pico W only in the pins that are already soldered (and
presence of debug probe connector). Therefore, if you do not intend to solder pins, we
recommend the Raspberry Pi Pico WH version for IoT projects.

All Raspberry Pi Pico boards are equipped with a microUSB connector, which is used
for programming and powering the board. The board can be programmed in C/C++ or Mi-
croPython. In this guide, we will focus on MicroPython as the easiest option for beginners.
For those willing to learn Raspberry Pi Pico programming in C/C++, we recommend the
guide on this topic available here: https://datasheets.raspberrypi.com/pico/getting-started-
with-pico.pdf.

There are also third-party boards available on the market, which usually contain
additional elements and connectors, e.g. allowing for easy battery connection, or USB-C
connector instead of microUSB.

News 1.1.1

Recently, a new version of the Raspberry Pi Pico 2W has been released, which
differs from its predecessor mainly in: the microcontroller (the RP2040 based on
the ARM Cortex-M0+ Dual-Core 133 MHz has been replaced with the RP2350
based on the ARM Cortex-M33 Dual-Core 150 MHz), the amount of SRAM and
Flash memory increased (2x more) and the number of PWM channels increased
from 16 to 24. As a bonus new RISC-V architecture cores appeared for more
advanced users as an altarnative choice: either ARM or RISC-V cores, although
greater capabilities remain on ARM cores.

However, the new version of the RP2350 microcontroller has one problem with
pull-down resistors (see the chapter on digital signals). Despite the aforementioned
problem, which can be mitigated, the new version is an interesting choice if you
intend to create more extensive programs and need more memory. This guide uses
the Raspberry Pi Pico W, which is enough for most IoT projects.

1.2 Installation
Before we start programming the Raspberry Pi Pico, you need to install:

• Thonny editor (https://projects.raspberrypi.org/en/projects/getting
-started-with-the-pico/2)

• Raspberry Pi Pico firmware (https://projects.raspberrypi.org/en/projec
ts/getting-started-with-the-pico/3).

https://www.youtube.com/watch?v=zbhOyCA_4lg
https://datasheets.raspberrypi.com/pico/getting-started-with-pico.pdf
https://datasheets.raspberrypi.com/pico/getting-started-with-pico.pdf
https://projects.raspberrypi.org/en/projects/getting-started-with-the-pico/2
https://projects.raspberrypi.org/en/projects/getting-started-with-the-pico/2
https://projects.raspberrypi.org/en/projects/getting-started-with-the-pico/3
https://projects.raspberrypi.org/en/projects/getting-started-with-the-pico/3

2. Basic electronic components

Before we begin our adventure with programming the Raspberry Pi Pico W, let’s get to
know the basic electronic components we will be using:

• Resistor - is an element used to reduce the current flowing through it. It dissipates
energy as heat energy. A resistor is a linear element. The larger the resistor we use,
the less current will flow through the circuit, according to Ohm’s law:

I =
V
R

(2.1)

where: V - voltage on the element (in some countries marked with the letter U), I -
current intensity, R - resistance.
The resistance value of a resistor can be read from the color code located on the
resistor as shown in the example in Fig. 2.1. For each resistor, we will read the
resistance value from left to right. For example, in Fig. 2.1, the top resistor has
the following band colors: yellow (value 4), pink (value 7), red (x100), and silver
(tolerance=10%). So its value is 47x100Ω = 4700Ω = 4.7kΩ and its tolerance is
10%. The tolerance shows how much the real resistance can differ from the nominal
value (eg. for a 10% 4.7kΩ resistor, its actual resistance will be between 4.23kΩ

(0.9 ·4.7kΩ) and 5.17kΩ (1.1 ·4.7kΩ).)
• LED diode - is a semiconductor element that converts current into light. More pre-

cisely, electrons passing from a higher energy level to a lower one in a semiconductor
emit a photon and depending on the energy of the photon, we obtain different colors
of LEDs. LEDs are polarized elements, which means that current will flow through
them in only one direction. Fig. 2.2 shows a LED with a cathode and anode lead.

The typical LED diode needs voltage near 1.7 V (VLED) and current between 1 to 15
mA. The voltage on the Raspberry Pi Pico pins is 3.3V (VRP), so you need to use a
resistor to limit the current flow:

R =
VRP−VLED

I
= (107;1600)Ω (2.2)

9

Figure 2.1: The color code of resistors. Source: https://electronicspost.com/resi
stor-color-code/

Figure 2.2: A LED with anode and cathode marked (left image) and a diode symbol (right
image). Source: https://www.build-electronic-circuits.com/what-is-an-l
ed/ .

https://electronicspost.com/resistor-color-code/
https://electronicspost.com/resistor-color-code/
https://www.build-electronic-circuits.com/what-is-an-led/
https://www.build-electronic-circuits.com/what-is-an-led/

10 Chapter 2. Basic electronic components

• Potentiometer - is a variable resistor that allows you to adjust the resistance between
two legs and thus divide the voltage. It consists of three legs, where two legs are
connected to the resistance path (see Fig. 2.3) and the third leg to the slider. By
adjusting the position of the slider, either with a knob or a screwdriver depending on
the type of potentiometer, we divide the resistance path into two resistors connected
in series. In this way, if we connect the first leg to 3.3V and the third leg to 0V, we
will get a voltage between 0V and 3.3V on the middle leg, depending on the position
of the knob.

Figure 2.3: Principle of operation of a potentiometer. Source: https://forbot.pl/bl
og/leksykon/potencjometr .

• Capacitor - is an element that accumulates an electric charge. It consists of two
plates and a dielectric between the plates (see left Fig. 2.4). Capacitors are used,
among other elements, to e.g. filter a signal (the capacitor does not pass the DC
voltage, and pass the ripples, hence it can smooth out the voltage, if connected to
ground) or to create resonant circuits (extracting a signal with a specific frequency).

Figure 2.4: Left image: internal structure of a capacitor. Source of image:
https://www.circuitbread.com. Right image: examples of polarized and non-polarized
capacitors. Source of image: https://www.ariat-tech.pl

https://forbot.pl/blog/leksykon/potencjometr
https://forbot.pl/blog/leksykon/potencjometr
https://www.circuitbread.com/tutorials/basics-of-capacitors
https://www.ariat-tech.pl/blog/analysis-of-the-structure,performance,and-applications-of-polarized-capacitors.html

11

Capacitors can be divided into: capacitors which require proper polarization (e.g.
electrolytic capacitors) and those which don’t (e.g. ceramic or foil capacitors). These
which need proper polarization should only be connected in one specified direction
(see markings on the capacitor housing). The electrolytic capacitors are characterized
by high capacity but they are not efficient with high frequency signals due to the
dissipation factor. Ceramic capacitors do not dry out but they are not efficient with
filtration of the low frequencies, because they have smaller capacitance.

• Button - is an element that closes the circuit when the button is pressed. When the
button is not pressed, the circuit is open. The construction of the button is shown in
Fig. 2.5.

Figure 2.5: Push button operating principle. Source: https://gmostofabd.github.io
/8051-Push-Button/.

• Breadboard - is a type of board used to connect electronic components, i.e. to build
electronic circuits. The board consists of many holes that are connected vertically as
shown in Fig. 2.6 (black line).

Figure 2.6: Connected holes are marked with black lines on the breadboard.

So the holes are connected in columns but not in rows. The board consists of two
parts separated by a large gap. These two parts are not connected to each other. On
the edges of the board there is a section for connecting power and ground. It is
usually marked with two lines: red and blue. In this case, the holes are connected
horizontally and not vertically. That is, along the red line, all the holes are connected
and we usually connect the power supply here, i.e. 3.3V in the case of the Raspberry
Pi Pico. Similarly, all the holes along the blue line are connected and we usually

https://gmostofabd.github.io/8051-Push-Button/
https://gmostofabd.github.io/8051-Push-Button/

12 Chapter 2. Basic electronic components

connect ground there. Fig. 2.7 shows the correct placement of sample electronic
components so that their pins are not shorted.

Figure 2.7: Example of placing elements on a breadboard so that the legs are not shorted.

• Sensors - are elements that allow for the measurement of various physical quantities,
e.g. temperature, pressure, humidity, distance, movement, heart rate, etc. Sensors
return measured values as: analog signals or digital signals usually transmitted using
data communication interfaces (bus).

• Actuators - are elements that perform movement, e.g. servomechanisms, DC
motors.

• Shields - are boards that extend the functionality of the basic board. There are many
types of shields. At the beginning, a very useful shield is the GPIO Expander For
Raspberry Pi Pico (e.g. from Waveshare Pico to hat - see Fig. 2.8), which allows
you to connect components to the Raspberry Pi Pico without having to place the
Raspberry Pi Pico on the breadboard. This solution reduces the risk of damaging the
Raspberry Pi Pico board by placing it incorrectly on the breadboard.

Figure 2.8: Waveshare Pico to hat expander. Source: https://www.waveshare.com/pi
co-to-hat.htm

https://www.waveshare.com/pico-to-hat.htm
https://www.waveshare.com/pico-to-hat.htm

3. Introduction to MicroPython
language

This chapter will present basic, selected elements of the MicroPython language, necessary
to create simple projects based on the Raspberry Pi Pico. Here they are:

• Variable - is a programming element that allows you to store a given value under
a chosen name, e.g. when creating a mathematical program to count the areas of
various figures, we would often use the number π equal to, let’s assume: 3.14.
Instead of entering it manually in each equation, you can create a variable: pi=3.14,
then an example program to count, e.g. the area of a circle would look like this:

1 pi = 3.14
2 r = 10
3 area_circle = pi*r*r

See that here we have created three numeric variables. One storing the value of the
number pi (pi), the second storing the value of the radius of the circle (r) and the
third storing the result, i.e. the area of the circle (area_circle). Remember that in
Python and MicroPython, variables are created by first entering the variable name
of your choice and after the sign = its value. There are many types of variables. In
the above example, we presented double type variables (floating point numbers, e.g.
3.42, -5.68, etc.). In addition, the basic types of variables include:

– integer (e.g. 0, -4, 12, etc.),
– boolean (logical variables with two possible values: True or False),
– string (strings of characters, e.g. "Hello", "Raspberry Pi Pico").

Fig. 3.1 shows an example program in which several variables of different types
were created. To display them on the screen, the print() function can be used. What
we put as an argument of print function will be displayed in the terminal. Notice
that in order to start the program, you must press the Run button (green button with
an arrow). If it is grayed out, check if the Raspberry Pi Pico board is connected to
the computer via USB and then select again: Micropython (Raspberry Pi Pico)...
in the lower right corner as shown by the arrow in figure. If you save the program
to the Raspberry Pi Pico with name "main.py" it will start automatically when the
Raspberry Pi Pico board will be powered regardless of whether it is connected to the
computer or powered from e.g. Powerbank.

14 Chapter 3. Introduction to MicroPython language

Figure 3.1: The example program with different type of variables.

• Lists - allow you to create a set of values. An example list looks like values=[1, 35,
6, 14] which means it consists of 4 elements separated by commas. The elements are
numbered with indexes similarly to houses along the street, only with the difference
that we number them from zero and not one. So to extract value 6 from the list, you
need to call the command: values[2] because the 0th element is value 1, the 1st
element is value 35, the 2nd element is value 6 and the 3rd element is value 14. The
element indexes are given in square brackets next to the list name.

• Functions - are a subroutine, or a separate part of a program that performs a specific
operation. A function can accept input data called function arguments and can
return a result. For example, you can write a function that calculates the area of
a circle. To declare a function, use the word def and then put the function name,
e.g. circle_area. After the function name, we place brackets and inside we provide
the function arguments. In the case of calculating the area of a circle, we need the
user to provide the radius of the circle and this will be our function argument. After
the brackets, we place a colon. Inside the function, we place the code that is to be
executed when the function is called, i.e. calculating the area of a circle using the
formula: A = πr2. In order for the function to return a result, we use the word return
and after it the value that the function is to return. So the code would look like this:

1 def circle_area(radius):
2 return 3.14* radius **2

Notice that the word return is placed 4 spaces after the word def, which is on the
line above. In MicroPython, indentation indicates which lines are inside a func-
tion/loop/structure and which are outside. It is very important that you make sure to
indent, otherwise the program will execute the lines outside the function/loop/struc-

15

ture.

The next issue is the exponentiation operation. In MicroPython, exponentiation
operations are performed by placing two stars, i.e. xy will be written as x∗∗y.

To call a given function in a program, you simply need to provide its name and put
arguments in brackets as shown in Fig. 3.2. Note that two alternative possibilities of
calling the print function are shown. In the case of calculating the area of the first
circle, the comment and the value are displayed separately. So these two pieces of
information are on separate lines after calling the program. You can also display
several pieces of information in the print function at once, separating them with
commas. Then the information displayed will be on one line.

Figure 3.2: The example program with definition of function.

• if...else structure - allows for the execution of different code fragments depending
on the condition being met. At the beginning, we write the word if and after it the
condition that is to be met. At the end, we place a colon character. All subsequent
lines that we place inside if (after indentation) will be executed only if the condition
is met. Then we can, but do not have to, add an else block and after it a colon
character. All subsequent lines inside the else block will be executed only if the
condition in the if has not been met. An example program in Fig. 3.3.
The example program uses two new elements. The first is the division operation
with remainder (%), which returns the remainder of division by a given number,
e.g. 12%2 will return 0 because there is no remainder from dividing 12 by 2, but
13%2 will return 1. Another new thing is the equalization operation. If we want to
check if a number equals another, we use the double equal sign (==). The remaining
equalization operations look like this:

– a>b (checking if a is greater than b)
– a>=b (checking if a is greater than or equal to b)

16 Chapter 3. Introduction to MicroPython language

– a<b (checking if a is less than b)
– a<=b (checking if a is less than or equal to b).

Figure 3.3: An example code showing how to use if...else structure.

In the above program, you can display a message about whether the number is even
or odd in a nicer way. The print function allows you to combine several strings by
adding them with the "+" sign. To display the variable a, which is an integer type,
you must first convert it to a string using the str() function. An example program is
shown in Fig. 3.4

Figure 3.4: Example program showing concatenating strings to display them in one
message using the print function.

• For loop - is a loop that allows you to repeat a given piece of code several times. An
example program with a for loop is shown in Fig. 3.5.
At the beginning, the word for is placed, then the iterating variable (in this case
called i), then the word in and then the range. In this case, the range was numeric
from 0 to 5, which means that the iterating variable i will increase its value by 1
each time the for loop is executed, starting from zero, up to a value one less than the
upper range, i.e. up to and including 4. In this case, the for loop will execute 5 times
and in each iteration the value of the iterator i will be added to the variable s.

17

Figure 3.5: Example program showing for loop.

• While loop - executes a given piece of code as long as the condition is met. An
example program showing the operation of the while loop is placed in Fig. 3.6.
At the beginning, the word while is placed, then the condition that must be met for
the loop to execute, and at the very end a colon character. In this case, the loop will
execute until the variable s is less than 10. In the middle of the loop, the value of the
variable s is displayed and then its value is increased by 2. This operation can be
written in several ways. One of them is: s = s+2 or, in short, s+= 2, which will
also add the value 2 to the current value of the variable s.

Figure 3.6: Example program showing while loop.

The example program uses the # sign. Everything that is placed on the same line
after the # sign is a comment that is not executed by the program.

In the case of microcontroller programming, an infinite loop is usually used, which
repeats a given fragment of code all the time until the power supply to the microcon-
troller board is turned off. Most often, an infinite loop is executed using a while loop

18 Chapter 3. Introduction to MicroPython language

by specifying a logical value of True as the condition:

1 while True:
2 print("It is infinite loop")

The introduced, selected elements of the MicroPython language are, according to the
authors, the most useful for starting work with the Raspberry Pi Pico W board. If you need
more information about the MicroPython language, it is best to familiarize yourself with
the documentation for this language.

4. The digital signals

Digital signals are signals that have one of two possible values 0 or 1, which in case of
Raspberry Pi Pico microcontroller corresponds to voltage values 0 V or 3.3 V. They can be
used to control elements such as LEDs (turning on or off) or to obtain information from
elements such as a button (pressed or not pressed) or a motion sensor (motion detected or
no motion detected). Reading or generating digital signals is done using general-purpose
input/output (GPIO) pins. GPIO are pins that can be used both as input pins, from which
we can read information, e.g. about pressing a button, or as output pins, on which we
can generate digital signals, e.g. to turn on an LED. Fig. 4.1 shows the 40 pins from the
Raspberry Pi Pico board, which are numbered from the top left. Pins serving as GPIO
are abbreviated GPx (green rectangles), where x is the ordinal number of the GPIO pin,
starting from 0 to 28.

Figure 4.1: The pinout of Raspberry Pi Pico. Source of image:
https://www.raspberrypi.com.

https://www.raspberrypi.com/documentation/microcontrollers/pico-series.html

20 Chapter 4. The digital signals

4.1 Example 1: blinking LED project
Let’s start the Raspberry Pi Pico adventure with a blinking LED project. First, connect the
LED to the selected GPIO pin as shown in Fig. 4.2.

Anode	-	longer	leg

GP15

GND

Figure 4.2: Connecting the electronic circuit from example 1.

Now let’s use Thonny to write a program in MicroPython that will turn the diode on
and off alternately every 1s. To do this, follow these steps:

1. Let’s start by including the library in MicroPython:

1 import machine

The machine library contains all the necessary instructions for communicating with
the Raspberry Pi Pico. The command import includes the specified library in the
project.

2. Next, you need to configure the GP15 pin to work as an output pin because we
control the LED by sending a value of 1 or 0 to the GP15 pin. The Pin function
from the machine library is used for this purpose. To call functions from library in
the MicroPython language, first we provide the name of the library and after the
dot the name of the function from this library, i.e. machine.Pin(). The Pin function
takes two arguments. The first one is the GPIO pin number. The second one is the
specification of whether the GPIO pin will work as an input (machine.Pin.IN) or
output (machine.Pin.OUT). Hence, in this case the function call would look like
machine.Pin(15, machine.Pin.OUT). The object returned by the Pin function was
assigned to the created variable led.

1 #Including machine library
2 import machine
3

4 #Configuring GPIO pin 15 as output
5 led = machine.Pin(15, machine.Pin.OUT)

4.1 Example 1: blinking LED project 21

3. In the next step we place an infinite loop, which will contain the main part of the
program:

1 #Including machine library
2 import machine
3

4 #Configuring GPIO pin 15 as output
5 led = machine.Pin(15, machine.Pin.OUT)
6

7 while True:

4. In the next step we light up the LED by sending the value 1 to the GP15 pin. The
value() function is used to set the value on the pin, which takes the value 0 or 1 as an
argument.

1 #Including machine library
2 import machine
3

4 #Configuring GPIO pin 15 as output
5 led = machine.Pin(15, machine.Pin.OUT)
6

7 while True:
8 led.value (1)

5. Now the program should wait 1s so that we can see the effect of lighting up the
diode. For this purpose we will use the utime library, which contains functions for
delays. First, we need to add the library:

1 #Including libraries
2 import machine
3 import utime
4

5 #Configuring GPIO pin 15 as output
6 led = machine.Pin(15, machine.Pin.OUT)
7

8 while True:
9 led.value (1)

6. The sleep function from the utime library allows you to delay the program for a
selected number of seconds. Let’s set a delay of 1s after the diode lights up:

1 #Including libraries
2 import machine
3 import utime
4

5 #Configuring GPIO pin 15 as output
6 led = machine.Pin(15, machine.Pin.OUT)
7

8 while True:
9 led.value (1)

10 utime.sleep (1)

7. The last step is to turn off the LED by sending value 0 to pin GP15 and wait 1s to
see the effect.

22 Chapter 4. The digital signals

1 #Including libraries
2 import machine
3 import utime
4

5 #Configuring GPIO pin 15 as output
6 led = machine.Pin(15, machine.Pin.OUT)
7

8 while True:
9 led.value (1)

10 utime.sleep (1)
11 led.value (0)
12 utime.sleep (1)

Run the above code in the Thonny editor and see the effect. If the diode blinks every
1s, you have done everything correctly. If not, first check the connection of the LED
diode on the board and then check if you have not made a mistake in the program
when rewriting the code.

Tip 4.1.1

In the above example, we set the value of the GP15 pin to 1 or 0 to turn the
diode on or off. The value() function was used for this purpose. However,
the program can be written even simplier. The toggle() function changes the
value on a given pin to the opposite, i.e. if the value was set to 1, it changes to
0, and if the value was set to 0, it changes to 1. So in the above example, the
interior of the infinite loop would change to:

1 while True:
2 led.toggle ()
3 utime.sleep (1)

Tip 4.1.2

If you save the program to the Raspberry Pi Pico (not on the computer) with
name "main.py" it will start automatically when the Raspberry Pi Pico board
will be powered regardless of whether it is connected to the computer or
powered from e.g. Powerbank.

4.2 Example 2: LED turned on/off with push button
In this example, the LED will turn on or off when the button is pressed. To do this, first
connect the circuit according to Fig. 4.3.

Push button has been connected to GP14 pin and LED to GP15. Now open Thonny
and let’s write some MicroPython code that will control LED depending on the button
press. To do this, follow the steps below:

4.2 Example 2: LED turned on/off with push button 23

GP14

3.3V

Figure 4.3: Connecting the electronic circuit from example 2.

1. First, you need to add the machine library and configure the GP15 pin, to which the
LED is connected, as an output as it was done in the previous example.

1 import machine
2

3 led = machine.Pin(15, machine.Pin.OUT)

2. Then you need to configure the GP14 pin, to which the button is connected, as an
input element (option machine.Pin.IN) because we will read the value from the
button (whether it has been pressed). The button should also be connected to resistors
called pull-up or pull-down, which are already mounted inside the Raspberry Pi Pico
board and connected to all GPIO pins. These resistors are necessary to avoid floating
input, i.e. a situation in which information would be read from the GPIO pin that
the button is pressed when we have not pressed it at all. This can be considered
as malfunction and serious design mistake. Pull-down resistors connect the button
to ground, which means that if the button is not pressed, the value 0 will be read.
Pull-up resistors connect the button to 3.3V, which means that if the button is not
pressed, the value 1 will be read. In this case, we will use pull-down resistors. For
this purpose, machine.Pin.PULL_DOWN should be provided as the third argument
of the Pin function and opposite button lead should be connected to +3.3 V. If we
want to use pull-up resistors, we would have to pass machine.Pin.PULL_UP as
the third argument and opposite button lead should be connected to ground (GND),
which has 0 V potential.

1 import machine
2

3 led = machine.Pin(15, machine.Pin.OUT)
4 but=machine.Pin(14, machine.Pin.IN,machine.Pin.PULL_DOWN)

24 Chapter 4. The digital signals

3. In the next step, let’s first turn off the LED by setting the value 0:

1 import machine
2

3 led = machine.Pin(15, machine.Pin.OUT)
4 but=machine.Pin(14, machine.Pin.IN,machine.Pin.PULL_DOWN)
5

6 led.value (0)

4. Now let’s create the main loop of the program and in it let’s check the button’s state.
If the value returned by the button is equal to 1, it means that the button was pressed:

1 import machine
2

3 led = machine.Pin(15, machine.Pin.OUT)
4 but=machine.Pin(14, machine.Pin.IN,machine.Pin.PULL_DOWN)
5

6 led.value (0)
7

8 while True:
9 if but.value()==1:

5. Next, let’s change the LED state to the opposite when the button is pressed:

1 import machine
2

3 led = machine.Pin(15, machine.Pin.OUT)
4 but=machine.Pin(14, machine.Pin.IN,machine.Pin.PULL_DOWN)
5

6 led.value (0)
7

8 while True:
9 if but.value()==1:

10 led.toggle ()

6. The last step is to add a 1s delay. This delay can be shorter but is necessary because
when we press the button it is on for a few milliseconds before we release the
button. During this time the program will execute the main loop several times and
the command to change the LED state to the opposite will be executed several times.
To prevent this, add a delay. Remember to add the utime library:

1 import machine
2 import utime
3

4 led = machine.Pin(15, machine.Pin.OUT)
5 but=machine.Pin(14, machine.Pin.IN,machine.Pin.PULL_DOWN)
6

7 led.value (0)
8

9 while True:
10 if but.value()==1:
11 led.toggle ()

4.2 Example 2: LED turned on/off with push button 25

12 utime.sleep (1)

Run the above code in the Thonny editor and press the button connected to the
Raspberry Pi. Does the LED light up? If not, check the button connection.

Warning 4.2.1

If you are using Raspberry Pi Pico 2W, the RP2350 microcontroller has a problem
with reducing the voltage to 0V when using pull-down resistors. In reality, the
voltage drops to about 2.2V. For this reason, it is better to use pull-up resistors that
connect the button to 3.3V, which means that if the button is not pressed, the value 1
will be read. To do this, connect the button leg to 0V instead of 3.3V as shown in
figure:

GP14

GND

However, two changes must be made in the program. The first is to change the
constant machine.Pin.PULL_DOWN to machine.Pin.PULL_UP when configuring
the button. The second change is that the button will be pressed when we read the
value 0 and not 1 on the pin to which the button is connected:

1 import machine
2 import utime
3

4 led = machine.Pin(15, machine.Pin.OUT)
5 but=machine.Pin(14, machine.Pin.IN,machine.Pin.PULL_UP)
6

7 led.value (0)
8

9 while True:
10 if but.value ()==0:
11 led.toggle ()
12 utime.sleep (1)

26 Chapter 4. The digital signals

4.3 Example 3: Light switched on by a motion sensor
In this example, we will create automatic light switch that will switch the light on when
the motion is detected by PIR motion sensor. For this purpose, we will use a LED diode
and a HC-SR501 PIR motion sensor shown in Fig. 4.4 According to the documentation for
the HC-SR501 PIR sensor, this sensor should be connected to a power supply from 5V to
20V. On the Raspberry Pi Pico W board, a 5V power supply is supplied on the VBUS pin.
When using sensors powered by a higher voltage than 3.3V, make sure that the returned
signal has a voltage of no more than 3.3V, otherwise we can damage the Raspberry Pi Pico
board. Where can I find such information? The easiest way is to find a datasheet for a
given sensor on the Internet and read what voltage the high signal generated by the sensor
has. In this case, the manufacturer states that the HC-SR501 PIR sensor returns signals
with a value of 3.3V or 0V.

Figure 4.4: PIR Motion Sensor HC-SR501. Source: https://www.unoelectro.com.ar.

So connect the PIR motion sensor and LED diode to the Raspberry Pi Pico W board as
shown in Fig. 4.5.

Figure 4.5: Connecting the electronic circuit from example 3.

https://www.unoelectro.com.ar/MLA-875111549-sensor-de-movimiento-hc-sr501-sr501-pir-ir-unoelectro-_JM

4.3 Example 3: Light switched on by a motion sensor 27

Now let’s write a program in the Thonny editor that will light up the LED for 5 seconds
when motion is detected. To do this, follow these steps:

1. First you need to import the machine and utime libraries:

1 import machine
2 import utime

2. Then you need to configure the GP15 pin to which the LED is connected as output
and turn off the LED:

1 import machine
2 import utime
3

4 LED = machine.Pin(15, machine.Pin.OUT)
5 LED.value (0)

3. The PIR motion sensor is an input element that returns 0 or 1 depending on whether
it has detected movement. Therefore, the GP22 pin, to which the PIR motion sensor
is connected, should be configured as an input:

1 import machine
2 import utime
3

4 LED = machine.Pin(15, machine.Pin.OUT)
5 LED.value (0)
6

7 PIR = machine.Pin(22, machine.Pin.IN)

4. Now in the main loop you need to read the value returned by the motion sensor and
display it in the terminal:

1 import machine
2 import utime
3

4 LED = machine.Pin(15, machine.Pin.OUT)
5 LED.value (0)
6

7 PIR = machine.Pin(22, machine.Pin.IN)
8

9 while True:
10 motion = PIR.value()
11 print(motion)

5. Now run the program and check how the motion sensor behaves. Fig. 4.4 shows two
potentiometers marked as "Output timing" and "Sensitivity". You can use them to
adjust the motion sensor. We recommend setting the "Output timing" potentiometer
to the lowest value possible and adjusting the sensitivity to your own taste. Don’t
worry if the sensor returns the value 1 several times after detecting movement. This
is normal because the shortest signal duration is longer than the execution time of
the main program loop. Once you have adjusted the motion sensor, continue writing
the program.

6. In the next step, the LED should light up when movement is detected for 5 seconds,
otherwise the LED should be off:

28 Chapter 4. The digital signals

1 import machine
2 import utime
3

4 LED = machine.Pin(15, machine.Pin.OUT)
5 LED.value (0)
6

7 PIR = machine.Pin(22, machine.Pin.IN)
8

9 while True:
10 motion = PIR.value()
11 print(motion)
12 if(motion ==1):
13 LED.value (1)
14 utime.sleep (5)
15 else:
16 LED.value (0)

The program is ready. Test its operation.

4.4 Pulse Width Modulation (PWM)
Some components such as RGB LEDs or servos are controlled using Pulse Width Modu-
lation (PWM). This technique allows for generating rectangular signals with a specified
duty cycle from 0 to 100%. For example, if the duty cycle is set to 20%, then for 20%
of the pulse duration we have a high signal and for 80% of the pulse duration we have a
low signal. Example signal waveforms generated using the PWM technique are shown in
Fig. 4.6.

Figure 4.6: Example PWM signals with duty cycles of 10% (top plot), 50% (middle plot),
and 90% (bottom plot). Source: https://www.robotyka.net.pl/pwm-modulacja-sz
erokosci-impulsu/.

https://www.robotyka.net.pl/pwm-modulacja-szerokosci-impulsu/
https://www.robotyka.net.pl/pwm-modulacja-szerokosci-impulsu/

4.4 Pulse Width Modulation (PWM) 29

4.4.0.1 Example 4: RGB LED

An RGB diode consists of three diodes in the colors red, green, and blue. To generate
a selected color, you control the fill of each color with a PWM. For example, olive is a
mixture of red and green. In the RGB code, to generate olive, you need to set 50% red fill
and 50% green fill. PWM signals make this possible, hence they are used to control RGB
diodes. The RGB LED has 4 pins as shown in Fig. 4.7.

Figure 4.7: Types of RGB LED diodes. Source: https://www.build-electronic-cir
cuits.com/rgb-led/ .

The longest lead is the common lead. If we are using a common cathode RGB diode,
the longest lead should be connected to GND. And lighting a specific color is done by
setting the high state on a red, green or blue lead. If the RGB diode has a common anode,
then the longest lead should be connected to 3.3V and lighting a specific color is done by
setting the low state on a given lead. In this example, we will use a common cathode RGB
diode, which should be connected as shown in Fig. 4.8. The remaining 3 legs are the leads
for the individual colors: red, green and blue. Don’t forget to add current limiting resistors
to each color control pin (3 x 330 Ω should be optimal).

Figure 4.8: Example connection of a common cathode RGB LED. We used 3 x 330 Ω

resistors for current limiting of each LED.

https://www.build-electronic-circuits.com/rgb-led/
https://www.build-electronic-circuits.com/rgb-led/

30 Chapter 4. The digital signals

After connecting the RGB diode, open Thonny and start writing the code that will
display the color sequences: red, green, blue, pink, white and yellow. To do this, you need
to:

1. First, add the machine and utime libraries:

1 import machine
2 import utime

2. Next, you need to define which pins will be used to generate PWM signals. This is
done using the PWM function from the machine library, which takes a Pin object as
an argument. As mentioned, the RGB LED consists of three diodes (red, green, and
blue), so you need to configure three pins as PWM.

1 import machine
2 import utime
3

4 red = machine.PWM(machine.Pin (11))
5 green = machine.PWM(machine.Pin (12))
6 blue = machine.PWM(machine.Pin (13))

3. Next, you need to set the PWM signal frequency. This is what the freq function is
for:

1 import machine
2 import utime
3

4 red = machine.PWM(machine.Pin (11))
5 green = machine.PWM(machine.Pin (12))
6 blue = machine.PWM(machine.Pin (13))
7

8 red.freq (1000)
9 green.freq (1000)

10 blue.freq (1000)

4. In Raspberry Pi Pico W, the resolution of PWM signals is 16 bits. This means that the
PWM signal fill is set from 0 to 65535, where 65535 is 100% fill. However, colors
are given in RGB code, where values are from 0 to 255. Hence, it is convenient to
create functions for setting the fill on a given diode, which will convert the value
given in the range (0; 255) to the range (0; 65535) so that the user does not have to
manually recalculate these values. To convert values given in the range (0; 255) to
the range (0; 65535), the given values should be multiplied by 65535/255=257:

1 import machine
2 import utime
3

4 red = machine.PWM(machine.Pin (11))
5 green = machine.PWM(machine.Pin (12))
6 blue = machine.PWM(machine.Pin (13))
7

8 red.freq (1000)
9 green.freq (1000)

10 blue.freq (1000)
11

4.4 Pulse Width Modulation (PWM) 31

12 def set_color(r, g, b):
13 red.duty_u16(r*257)
14 green.duty_u16(g*257)
15 blue.duty_u16(b*257)

5. Now we need to create the main while loop, in which the colors red, green and blue
will be set and there will be a 1s delay between them:

1 import machine
2 import utime
3

4 red = machine.PWM(machine.Pin (11))
5 green = machine.PWM(machine.Pin (12))
6 blue = machine.PWM(machine.Pin (13))
7

8 red.freq (1000)
9 green.freq (1000)

10 blue.freq (1000)
11

12 def set_color(r, g, b):
13 red.duty_u16(r*257)
14 green.duty_u16(g*257)
15 blue.duty_u16(b*257)
16

17 while True:
18 set_color (255,0,0) #red
19 utime.sleep (1)
20

21 set_color (0,255,0) #green
22 utime.sleep (1)
23

24 set_color (0,0,255) #blue
25 utime.sleep (1)

6. Run the program and see if these three colors are displayed on the RGB diode in
order. If not, check the connection and code. If they are displayed, add the remaining
colors to display, i.e.: pink, white and yellow.

1 import machine
2 import utime
3

4 red = machine.PWM(machine.Pin (11))
5 green = machine.PWM(machine.Pin (12))
6 blue = machine.PWM(machine.Pin (13))
7

8 red.freq (1000)
9 green.freq (1000)

10 blue.freq (1000)
11

12 def set_color(r, g, b):
13 red.duty_u16(r*257)
14 green.duty_u16(g*257)

32 Chapter 4. The digital signals

15 blue.duty_u16(b*257)
16

17 while True:
18 set_color (255,0,0) #red
19 utime.sleep (1)
20 set_color (0,255,0) #green
21 utime.sleep (1)
22 set_color (0,0,255) #blue
23 utime.sleep (1)
24 set_color (255 ,20 ,147) #pink
25 utime.sleep (1)
26 set_color (255 ,255 ,255) #white
27 utime.sleep (1)
28 set_color (255, 255, 0) #yellow
29 utime.sleep (1)

Test the finished program.

Tip 4.4.1

What should be changed in the above example if we have a common anode RGB
LED? Two things should be changed:

1. The connection of the RGB LED. The black wire from Fig. 4.8 should be
connected to 3.3V and not GND.

2. The individual colors in the common anode RGB LED are lit with a low state
and not a high state. So to set 100% fill, you should set the value 0 and not
65535 on a given pin. Hence, you should modify the set_color() function as
follows:

1 def set_color(r, g, b):
2 red.duty_u16 (65535 -r*257)
3 green.duty_u16 (65535 -g*257)
4 blue.duty_u16 (65535 -b*257)

Warning 4.4.1

When using more pins configured to generate PWM signals, be careful. In Rasp-
berry Pi Pico W we have 8 PWM channels, each with two outputs A and B (see
Fig. 4.9). Each output with the same number, e.g. A[5] and B[5] are not completely
independent. We can use these two outputs in one program and set different PWM
duty cycles, but the frequency of these signals will be the same.

4.4 Pulse Width Modulation (PWM) 33

Figure 4.9: The PWM channels. Source: https://www.codrey.com/raspberry-pi/
raspberry-pi-pico-pwm-primer/.

https://www.codrey.com/raspberry-pi/raspberry-pi-pico-pwm-primer/
https://www.codrey.com/raspberry-pi/raspberry-pi-pico-pwm-primer/

5. The analog signals

In addition to digital signals that have two possible states 0 or 1 (0 V or 3.3 V accordingly in
Low Voltage TTL standard), analog signals carry information in terms of voltage or current.
These provide continuous values in a given range, e.g. a sensor measuring temperature will
return voltage proportional to temperature (e.g. 235 mV will correspond to the temperature
of 23.5oC. We can say that sensor gain equals to 10 mV/oC). To read the voltage of analog
signals, an analog-to-digital converter (ADC) is necessary. Such a device is built into the
Raspberry Pi Pico microcontroller already. The built-in converter is 12-bit. If we want
more accurate measurements, we can connect an external converter to the Raspberry Pi
Pico (more on this later in the guide).

5.1 Example 5: temperature measurement
Temperature measurement can be done in two ways: by using the built-in temperature
sensor (biased bipolar diode) or an external temperature sensor, e.g. LM35. In this case,
both methods will be implemented and the results will be compared. Let’s start with the
built-in temperature sensor. Open the Thonny editor and perform the following steps:

1. First you need to add the machine and utime libraries:

1 import machine
2 import utime

2. Then you need to configure the pin to work as an ADC, for this purpose the ADC(pin
number) function is used. The built-in temperature sensor is connected to the fourth
ADC channel:

1 import machine
2 import utime
3

4 built_in_temp = machine.ADC(4)

3. Then in the main while loop, read the value from the ADC using the read_u16()
function. Although the ADC is 12-bit, the read_u16 function immediately converts
the value from 12bits to 16bits:

5.1 Example 5: temperature measurement 35

1 import machine
2 import utime
3

4 built_in_temp = machine.ADC(4)
5

6 while True:
7 built_in_temp.read_u16 ()

4. To obtain the voltage value, convert the values returned by the read_u16 function in
the range (0;65535) to the voltage (0;3.3)V:

1 import machine
2 import utime
3

4 built_in_temp = machine.ADC(4)
5

6 while True:
7 voltage1 = built_in_temp.read_u16 () *3.3/65535

5. Then you need to convert the voltage to temperature according to the formula in the
RP2040 documentation. The result will be displayed in the terminal every 1s:

1 import machine
2 import utime
3

4 built_in_temp = machine.ADC(4)
5

6 while True:
7 voltage1 = built_in_temp.read_u16 () *3.3/65535
8 temp1 = 27 - (voltage1 -0.706) /0.001721
9 print(temp1)

10 utime.sleep (1)

Test the program.

Measurement using the built-in temperature sensor is burdened with two fundamen-
tal problems. The first is the high inaccuracy of temperature measurement resulting
from the sensitivity of the read values depending on the reference voltage. A change
in the reference voltage by 1% already causes a temperature reading error of about
4oC. Another problem is the fact that the built-in temperature sensor actually mea-
sures the temperature of the RP2040 and not the environment. Therefore, during
intensive operation of the RP2040, the read temperature may be much higher than
the ambient temperature. If you want a more accurate temperature measurement, it
is better to use an external temperature sensor.

Now let’s extend the program by adding temperature reading from the analog LM35
sensor. To do this, connect the LM35 sensor to the Raspberry Pi Pico W as shown
in Fig. 5.1. The pins on which the ADC channels are led out are: GP26, GP27 and
GP28 (see Fig. 1.1 - dark green markings).

36 Chapter 5. The analog signals

Flat	part	
at	the	frontGP26

Figure 5.1: Example connection of a LM35 sensor.

6. Now let’s configure the GP26 pin to work as an ADC:

1 import machine
2 import utime
3

4 built_in_temp = machine.ADC(4)
5 external_temp = machine.ADC(26)
6

7 while True:
8 voltage1 = built_in_temp.read_u16 () *3.3/65535
9 temp1 = 27 - (voltage1 -0.706) /0.001721

10 print(temp1)
11 utime.sleep (1)

7. In the next step, read the voltage returned by the LM35 sensor and multiply the
result by 100 to obtain the temperature in degrees Celsius according to the LM35
sensor documentation (sensor gain is 10 mV/oC, so we need voltage in mV thus we
multiply by 1000 and divide by sensor gain: 10, to get temperature in oC. Hence
multiply value after ADC conversion by 100):

1 import machine
2 import utime
3

4 built_in_temp = machine.ADC(4)
5 external_temp = machine.ADC (26)
6

7 while True:
8 voltage1 = built_in_temp.read_u16 () *3.3/65535
9 temp1 = 27 - (voltage1 -0.706) /0.001721

10

11 voltage2 = external_temp.read_u16 () *3.3/65535
12 temp2 = voltage2 *100

5.1 Example 5: temperature measurement 37

13

14 utime.sleep (1)

8. The final step is to display both results in the terminal in single line:

1 import machine
2 import utime
3

4 built_in_temp = machine.ADC(4)
5 external_temp = machine.ADC (26)
6

7 while True:
8 voltage1 = built_in_temp.read_u16 () *3.3/65535
9 temp1 = 27 - (voltage1 -0.706) /0.001721

10

11 voltage2 = external_temp.read_u16 () *3.3/65535
12 temp2 = voltage2 *100
13 print("Temp1="+str(temp1)+" Temp2="+str(temp2))
14 utime.sleep (1)

Test the program and compare the results.

The use of external ADCs to obtain more accurate voltage measurements will be
discussed later in this tutorial.

6. Interrupts

Interrupts give us a mechanism that allows to stop the execution of a program for the time
of a special procedure and then return to the moment where the program was stopped and
resume it (see Fig. 6.1). Interrupts can be triggered by external or internal signals.

Figure 6.1: How interrupts work. Source: https://makergram.com/blog/what-is-i
nterrupts/

To better understand the idea, interrupts are performed automatically at many moments
in life, e.g. when we are reading a book and the phone rings, we stop reading the book

https://makergram.com/blog/what-is-interrupts/
https://makergram.com/blog/what-is-interrupts/

6.1 Example 6: Sound signals at traffic lights 39

to answer the phone and after the conversation ends, we go back to reading the book.
Exactly the same idea occurs in microcontrollers. External interrupts can be triggered by
the following signals on the selected GPIO pin:

• Pin.IRQ_RISING - when the signal changes from low to high.
• Pin.IRQ_FALLING - when the signal changes from high to low.

6.1 Example 6: Sound signals at traffic lights
To better understand the idea of interruption, we will make a pedestrian traffic light with
an audible signal for blind or visually impaired people when a button is pressed. For this
purpose, we will use 3 LEDs to signal the traffic light, a buzzer with a tone generator and a
button that will turn on the audible signal for at least one full sequence of lights.

First, connect the system according to Fig. 6.2.

GP10;	GP11;	GP12

GP17

3.3V

GP16

Figure 6.2: Connecting the electronic circuit from example 6.

Then open the Thonny editor and follow these steps:
1. First, add the necessary libraries: machine and utime and configure the pins to which

the LEDs are connected as outputs:

1 import machine
2 import utime
3

4 led_red = machine.Pin(10, machine.Pin.OUT)
5 led_yellow = machine.Pin(11, machine.Pin.OUT)
6 led_green = machine.Pin(12, machine.Pin.OUT)

2. Then configure the GP16 pin to which the buzzer is connected as a pin to generate a
PWM signal and set the PWM signal frequency to 1000 Hz.

1 import machine
2 import utime
3

4 led_red = machine.Pin(10, machine.Pin.OUT)
5 led_yellow = machine.Pin(11, machine.Pin.OUT)

40 Chapter 6. Interrupts

6 led_green = machine.Pin(12, machine.Pin.OUT)
7

8 buzzer = machine.PWM(machine.Pin (16))
9 buzzer.freq (1000)

3. In the main loop of the program, the LEDs should be lit according to the sequence:
• red LED on, other LEDs off
• red and yellow LEDs on, green off
• green LED on and other LEDs off.

1 import machine
2 import utime
3

4 led_red = machine.Pin(10, machine.Pin.OUT)
5 led_yellow = machine.Pin(11, machine.Pin.OUT)
6 led_green = machine.Pin(12, machine.Pin.OUT)
7

8 buzzer = machine.PWM(machine.Pin (16))
9 buzzer.freq (1000)

10

11 while True:
12 led_red.value (1)
13 led_yellow.value (0)
14 led_green.value (0)
15

16 led_red.value (1)
17 led_yellow.value (1)
18 led_green.value (0)
19

20 led_red.value (0)
21 led_yellow.value (0)
22 led_green.value (1)

4. Next, let’s create a logical variable sound_active, which will have one of two
possible values: True or False. When it has the value True, we will start the buzzer
and generate an audible signal informing whether the lights are red or green. In
addition, let’s create a function make_sound(duration), in which we will generate a
sound signal. For this purpose, we will use the function duty_u16(), which will set
the duty of the PWM signal. This function accepts values from 0 to 65535. The duty
change will affect the volume of the sound generated by the buzzer. Sound signals in
different countries may differ, but as a rule it is assumed that during a red or yellow
light, the sound signal is generated at longer intervals than during a green light. To
control the intervals between the generated sound signals, we will create a variable
duration given as an argument to the function:

1 import machine
2 import utime
3

4 led_red = machine.Pin(10, machine.Pin.OUT)
5 led_yellow = machine.Pin(11, machine.Pin.OUT)
6 led_green = machine.Pin(12, machine.Pin.OUT)

6.1 Example 6: Sound signals at traffic lights 41

7

8 buzzer = machine.PWM(machine.Pin (16))
9 buzzer.freq (1000)

10

11 sound_active=False
12

13 def make_sound(duration):
14 if sound_active:
15 buzzer.duty_u16 (16383) %turn on buzzer
16 utime.sleep (1)
17 buzzer.duty_u16 (0) %turn off buzzer
18 utime.sleep(duration)
19 else:
20 buzzer.duty_u16 (0)
21

22 #Because when the sound signal is turned on,
23 #the total delay is 1 + duration. So here we
24 #add 1 to maintain the same delay.
25

26 utime.sleep(duration +1)
27

28 while True:
29 led_red.value (1)
30 ...

5. Now let’s add sound generation after each traffic lights. The device should generate
a warning sound signal 5 times. For this purpose, a for loop is created, which will
execute 5 times and call the make_sound function 5 times. In the case of red or
yellow, the interval between sound signals should be 2 s and in the case of green 1 s.
Hence these parameters were given to the make_sound function:

1 import machine
2 import utime
3

4 led_red = machine.Pin(10, machine.Pin.OUT)
5 led_yellow = machine.Pin(11, machine.Pin.OUT)
6 led_green = machine.Pin(12, machine.Pin.OUT)
7

8 buzzer = machine.PWM(machine.Pin (16))
9 buzzer.freq (1000)

10

11 sound_active=False
12

13 def make_sound(duration):
14 if sound_active:
15 buzzer.duty_u16 (16383) %turn on buzzer
16 utime.sleep (1)
17 buzzer.duty_u16 (0) %turn off buzzer
18 utime.sleep(duration)
19 else:
20 buzzer.duty_u16 (0)

42 Chapter 6. Interrupts

21 utime.sleep(duration +1)
22

23 while True:
24 led_red.value (1)
25 led_yellow.value (0)
26 led_green.value (0)
27 for i in range (0,5):
28 make_sound (2)
29

30 led_red.value (1)
31 led_yellow.value (1)
32 led_green.value (0)
33 for i in range (0,5):
34 make_sound (2)
35

36 led_red.value (0)
37 led_yellow.value (0)
38 led_green.value (1)
39 for i in range (0,5):
40 make_sound (1)

6. Now let’s configure the GP17 pin, to which the button is connected, as an input.
In addition, let’s configure the interrupt. To do this, use the function: irq(trigger,
handler). The first argument specifies what type of signal the interrupt is sensitive
to, e.g. a falling or rising edge. In the case of a rising edge, the interrupt will be
triggered when the button is pressed, and in the case of a falling edge, when the
button is released. In this case, we will use a rising edge. The second argument is the
name of the function we created, which will be executed when an interrupt occurs.
We will create a function called sound_for_blind in the next step:

1 import machine
2 import utime
3

4 led_red = machine.Pin(10, machine.Pin.OUT)
5 led_yellow = machine.Pin(11, machine.Pin.OUT)
6 led_green = machine.Pin(12, machine.Pin.OUT)
7

8 buzzer = machine.PWM(machine.Pin (16))
9 buzzer.freq (1000)

10

11 sound_active=False
12

13 def make_sound(duration):
14 if sound_active:
15 buzzer.duty_u16 (16383) %turn on buzzer
16 utime.sleep (1)
17 buzzer.duty_u16 (0) %turn off buzzer
18 utime.sleep(duration)
19 else:
20 buzzer.duty_u16 (0)
21 utime.sleep(duration +1)

6.1 Example 6: Sound signals at traffic lights 43

22

23 button = machine.Pin(17, machine.Pin.IN, machine.Pin.PULL_DOWN)
24 button.irq(trigger=machine.Pin.IRQ_RISING, handler=sound_for_blind)
25

26 while True:
27 led_red.value (1)
28 ...

7. Now let’s create a function that will be called when an interrupt occurs. Inside
this function we will change the value of the variable sound_active to True. Since
this is a variable defined outside the function we should call the command global
variable_name which informs that this variable is created outside the function:

1 import machine
2 import utime
3

4 led_red = machine.Pin(10, machine.Pin.OUT)
5 led_yellow = machine.Pin(11, machine.Pin.OUT)
6 led_green = machine.Pin(12, machine.Pin.OUT)
7

8 buzzer = machine.PWM(machine.Pin (16))
9 buzzer.freq (1000)

10

11 sound_active=False
12

13 def make_sound(duration):
14 if sound_active:
15 buzzer.duty_u16 (16383) %turn on buzzer
16 utime.sleep (1)
17 buzzer.duty_u16 (0) %turn off buzzer
18 utime.sleep(duration)
19 else:
20 buzzer.duty_u16 (0)
21 utime.sleep(duration +1)
22

23 def sound_for_blind(pin):
24 global sound_active
25 sound_active=True
26 print("Sound active: "+str(sound_active))
27

28 button = machine.Pin(17, machine.Pin.IN, machine.Pin.
↪→ PULL_DOWN)

29 button.irq(trigger=machine.Pin.IRQ_RISING , handler=
↪→ sound_for_blind)

30

31 while True:
32 led_red.value (1)
33 ...

Now when the user presses the button, the sound_for_blind function will be called,
regardless of which line of code in the while loop the program will execute.

44 Chapter 6. Interrupts

8. The last step is to turn off the sound signal after the at least one full light switching
sequence. To do this, let’s create a counts variable that will count how many times
the full sequence has been executed after the interruption. Then, in the main program,
we will check if counts is greater than or equal to 1, if so, we turn off the sound
signal by setting the sound_active variable to False. If the sound signal is on, then
with each iteration of the while loop we will increase the value of the counts variable
by 1:

1 import machine
2 import utime
3

4 led_red = machine.Pin(10, machine.Pin.OUT)
5 led_yellow = machine.Pin(11, machine.Pin.OUT)
6 led_green = machine.Pin(12, machine.Pin.OUT)
7

8 buzzer = machine.PWM(machine.Pin (16))
9 buzzer.freq (1000)

10

11 sound_active=False
12

13 def make_sound(duration):
14 if sound_active:
15 buzzer.duty_u16 (16383)
16 utime.sleep (1)
17 buzzer.duty_u16 (0)
18 utime.sleep(duration)
19 else:
20 buzzer.duty_u16 (0)
21 utime.sleep(duration +1)
22

23 def sound_for_blind(pin):
24 global sound_active
25 sound_active=True
26 print("Sound active: "+str(sound_active))
27

28 button = machine.Pin(17, machine.Pin.IN, machine.Pin.
↪→ PULL_DOWN)

29 button.irq(trigger=machine.Pin.IRQ_RISING , handler=
↪→ sound_for_blind)

30

31 counts=0
32

33 while True:
34 #How many times, the full sequence has been executed
35 if counts >=1:
36 sound_active = False
37 counts =0
38 if sound_active:
39 counts =+1
40

6.1 Example 6: Sound signals at traffic lights 45

41 led_red.value (1)
42 led_yellow.value (0)
43 led_green.value (0)
44 for i in range (0,5):
45 make_sound (2)
46

47 led_red.value (1)
48 led_yellow.value (1)
49 led_green.value (0)
50 for i in range (0,5):
51 make_sound (2)
52

53 led_red.value (0)
54 led_yellow.value (0)
55 led_green.value (1)
56 for i in range (0,5):
57 make_sound (1)

The program is now ready, you can test it.

7. Sensors

Sensors are used to measure various physical quantities , such as temperature, pressure,
UV radiation intensity, acceleration, sound detection, gas concentration, etc. Sensors can
return analog values (e.g. temperature sensor discussed in chapter 5) or digital values.
Digital values can be either 0-1 (e.g. motion sensor, sound detection sensor) or they can be
values from a given range, and then serial communication interfaces (buses) such as I2C,
SPI, UART or 1−wire are used to transfer data. The digital transmission has an advantage
over analog transmission in that is much less sensitive to external interference and noise.

The serial communication interface consists of a group of lines, which are used to
send data between connected devices. Serial interfaces can be divided in two groups:
synchronous and asynchronous. The first group use additional serial clock line, which syn-
chronize all devices connected to communication interface. The most popular synchronous
buses are SPI (Serial Peripheral Interface) and I2C (Inter-Integrated Circuit), which is also
marked as I2C, IIC or TWI (Two Wire Interface). The most popular asynchronous serial
communication interfaces are UART (Universal asynchronous receiver-transmitter) and
1−wire.

In this chapter, we will discuss one sensor per type of digital communication. Other
sensors are used in most ways similarly to those discussed below.

7.1 Example 7: parking sensor
Parking sensors emit sound when the distance between car and obstacle gets small, e.g.
less than 1 meter when reverse parking. The frequency of the emitted sound gets higher the
closer the distance to the obstacle is. To create a parking sensor, we will use the HC-SR04
ultrasonic distance sensor and a buzzer. First, connect the system according to Fig. 7.1.

Now go to Thonny editor and start creating a program that will first read the distance
from an obstacle using an ultrasonic distance sensor and then generate a warning sound if
the obstacle is closer than 1m. To do this, follow these steps:

1. First, let’s add the necessary libraries, i.e. machine and utime, and configure the
pins: GP16 (buzzer) as PWM, GP18 (trigger) as output, and GP19 (echo) as input.
In addition, let’s set the PWM signal generation frequency to 1000 Hz.

7.1 Example 7: parking sensor 47

VBUS

GP16

Figure 7.1: Connecting the electronic circuit from example 7.

1 import machine
2 import utime
3

4 trigger = machine.Pin(18, machine.Pin.OUT)
5 echo = machine.Pin(19, machine.Pin.IN)
6

7 buzzer = machine.PWM(machine.Pin (16))
8 buzzer.freq (1000)

2. Next, in the main loop, let’s add a code fragment to measure the distance from the
ultrasonic distance sensor. According to the documentation for the HC-SR04 sensor
(see Fig. 7.2), first set the low signal on the trigger for a short time, e.g. 2µs. Then
set the high signal for 10µs. To generate delays in microseconds, use the function:
utime.sleep_us(). In the next step, set the low signal on the trigger.

Figure 7.2: Principle of measuring distance on the HC-SR04 ultrasonic distance sensor.
Source: https://www.electronicoscaldas.com/datasheet/HC-SR04.pdf.

https://www.electronicoscaldas.com/datasheet/HC-SR04.pdf

48 Chapter 7. Sensors

1 import machine
2 import utime
3

4 trigger = machine.Pin(18, machine.Pin.OUT)
5 echo = machine.Pin(19, machine.Pin.IN)
6

7 buzzer = machine.PWM(machine.Pin (16))
8 buzzer.freq (1000)
9

10 while True:
11 trigger.value (0)
12 utime.sleep_us (2)
13 trigger.value (1)
14 utime.sleep_us (10)
15 trigger.value (0)

3. Now we need to measure how long the high signal on the echo pin lasted, because
the duration of the signal on the echo pin is related to distance. To do this, we will
use the utime.ticks_us() function, which measures how much time has passed in µs
since the program was started. First, we will create a while loop that will execute as
long as the signal is low. Inside, we will place the tick_us() function. This way, we
will get information about when the signal was last low.

1 import machine
2 import utime
3

4 trigger = machine.Pin(18, machine.Pin.OUT)
5 echo = machine.Pin(19, machine.Pin.IN)
6

7 buzzer = machine.PWM(machine.Pin (16))
8 buzzer.freq (1000)
9

10 while True:
11 trigger.value (0)
12 utime.sleep_us (2)
13 trigger.value (1)
14 utime.sleep_us (10)
15 trigger.value (0)
16

17 while echo.value()==0:
18 signal_off = utime.ticks_us ()

4. Similarly, we will measure when the signal was last high on the echo pin:

1 import machine
2 import utime
3

4 trigger = machine.Pin(18, machine.Pin.OUT)
5 echo = machine.Pin(19, machine.Pin.IN)
6

7 buzzer = machine.PWM(machine.Pin (16))

7.1 Example 7: parking sensor 49

8 buzzer.freq (1000)
9

10 while True:
11 trigger.value (0)
12 utime.sleep_us (2)
13 trigger.value (1)
14 utime.sleep_us (10)
15 trigger.value (0)
16

17 while echo.value()==0:
18 signal_off = utime.ticks_us ()
19

20 while echo.value()==1:
21 signal_on = utime.ticks_us ()

5. The difference between the time of the last occurrence of the high and low signal
is the duration of the high pulse on the echo pin. How do we translate the pulse
duration into distance? Look at Fig. 7.3 showing the idea of measuring distance with
an ultrasonic distance sensor.

Figure 7.3: The principle of measuring distance using an ultrasonic sensor.. Source:
https://www.researchgate.net/figure/A-block-diagram-of-Ultrasonic-se
nsor-working-principles_fig5_344385811.

At the beginning, a sound wave is emitted, which reflects from the object and returns
to the sensor. Therefore, in the measured time t, the wave travels twice the distance
between the sensor and the object and moves at a speed of about 340 m/s (the speed
of sound in air). Therefore, we can write the equation for the speed:

v =
2d
t

(7.1)

d = v · t
2
= 0.034

cm
µs
· t

2
≈ t

58
(7.2)

Hence, the obtained pulse duration should be divided by 58 to get the distance in
centimeters:

https://www.researchgate.net/figure/A-block-diagram-of-Ultrasonic-sensor-working-principles_fig5_344385811
https://www.researchgate.net/figure/A-block-diagram-of-Ultrasonic-sensor-working-principles_fig5_344385811

50 Chapter 7. Sensors

1 import machine
2 import utime
3

4 trigger = machine.Pin(18, machine.Pin.OUT)
5 echo = machine.Pin(19, machine.Pin.IN)
6

7 buzzer = machine.PWM(machine.Pin (16))
8 buzzer.freq (1000)
9

10 while True:
11 trigger.value (0)
12 utime.sleep_us (2)
13 trigger.value (1)
14 utime.sleep_us (10)
15 trigger.value (0)
16

17 while echo.value()==0:
18 signal_off = utime.ticks_us ()
19

20 while echo.value()==1:
21 signal_on = utime.ticks_us ()
22

23 diff = signal_on -signal_off
24 distance = diff /58.0
25 print("Distance="+str(distance))

6. The last step is to generate a warning sound on the buzzer. To do this, we check if the
distance is less than 100 cm. If so, we generate a PWM signal with the selected duty
cycle on the buzzer, thus emitting a sound wave. The entered value will translate into
the volume of the emitted sound. Then we set a delay proportional to the distance.
In this case, the distance was divided by 50 so that the warning sound was not too
long. The value of 50 was selected empirically, it does not make much physical
sense. Then we turn off the buzzer by setting the fill to 0 and also wait for a time
proportional to the distance.

1 import machine
2 import utime
3

4 trigger = machine.Pin(18, machine.Pin.OUT)
5 echo = machine.Pin(19, machine.Pin.IN)
6

7 buzzer = machine.PWM(machine.Pin (16))
8 buzzer.freq (1000)
9

10 while True:
11 trigger.value (0)
12 utime.sleep_us (2)
13 trigger.value (1)
14 utime.sleep_us (10)
15 trigger.value (0)

7.2 Example 8: GPS module 51

16

17 while echo.value()==0:
18 signal_off = utime.ticks_us ()
19

20 while echo.value()==1:
21 signal_on = utime.ticks_us ()
22

23 diff = signal_on -signal_off
24 distance = diff /58.0
25 print("Distance="+str(distance))
26

27 if distance <100:
28 buzzer.duty_u16 (16383)
29 utime.sleep(distance /50)
30 buzzer.duty_u16 (0)
31 utime.sleep(distance /50)

Now the program is ready and you can test it.

7.2 Example 8: GPS module
In this example, we will focus on the asynchronous UART communication bus, which
will be used to receive data from the Waveshare Neo-6m/7m GPS module. The Raspberry
Pi Pico has 2 UART ports: UART0 and UART1 (see Fig: 1.1). We will connect the GPS
module to UART1 (GP4 and GP5 pins). Just remember that the lines to Rx (Receiver) and
Tx (Transmitter) should be connected crosswise, i.e. the Rx line from the GPS module
to the Tx of the Raspberry Pi Pico (GP4) and the Tx line from the GPS to the Rx of the
Raspberry Pi Pico (GP5). We connect the power supply of the GPS module to 3.3V. So
connect the system as shown in Fig. 7.4.

Figure 7.4: Connecting the electronic circuit from example 8.

52 Chapter 7. Sensors

Now open the Thonny editor and let’s try to write code that will receive data frames
from the GPS module:

1. First, you need to add the machine and utime libraries and configure the UART. For
this purpose, use the machine.UART() function, which takes the UART port number
as its first argument, i.e. the value 0 or 1. We connected the GPS module to UART1,
so we enter 1. Then you need to provide the baund rate and the pins to which the
GPS module is connected. If you look at Fig. 1.1, UART1 is available on two sets of
pins: GP4 and GP5 or GP8 and GP9. So you need to indicate which pins are used to
connect the GPS module:

1 import machine
2 import utime
3

4 uart = machine.UART(1, baudrate =9600, tx=machine.Pin(4),
↪→ rx=machine.Pin(5))

2. Then in the main loop we check if there is any data available in the UART buffer
with the any() function and if there is, we read the line with the readline() function.
We display the read line in the terminal:

1 import machine
2 import utime
3

4 uart = machine.UART(1, baudrate =9600, tx=machine.Pin(4),
↪→ rx=machine.Pin(5))

5

6 while True:
7 if uart.any():
8 line = uart.readline ()
9 print(line)

10 utime.sleep (1)

When you run the program, at the beginning you will get the result as shown in
Fig. 7.5.

Figure 7.5: Example output from GPS module without getting fix to the satellites.

This result means that the GPS module has not yet get fix to the satellites and is
sending empty characters between the commas. When it gets fix, data will appear
between the commas, which we will be able to interpret (e.g. as shown in Fig. 7.6).
How to interpret data from GPS? Data received from GPS is recorded in accordance
with the NMEA (National Marine Electronics Association) protocol, in which each

7.2 Example 8: GPS module 53

Figure 7.6: Example output from GPS, which got fix to the satellites. Source: https:
//www.waveshare.com/wiki/File:UART-GPS-NEO-6M-User-Manual-2.png.

sequence begins with an identifier, e.g. GPGGA - Global Positioning System Fix
Data. So to read the interesting data, you need to find the appropriate sequence
identifier, in which the information you are looking for is located. In this case, we
want to read the position, so we are only interested in the GPGGA frame. The rest
of the frames are discussed here: https://aprs.gids.nl/nmea/ . The GPPGA
frame looks like shown in Fig. 7.7.

Figure 7.7: GPGGA sequence. Source: https://aprs.gids.nl/nmea/

3. To extract a GPGGA frame, first convert the read text in the form of bytes to a
string with utf-8 encoding. For this purpose, the decode() function is used. Then,
we display only those lines that start with $GPGGA. For this purpose, we use the
startswith() function, which returns True if the string starts with the selected word
given in brackets:

https://www.waveshare.com/wiki/File:UART-GPS-NEO-6M-User-Manual-2.png
https://www.waveshare.com/wiki/File:UART-GPS-NEO-6M-User-Manual-2.png
https://aprs.gids.nl/nmea/
https://aprs.gids.nl/nmea/

54 Chapter 7. Sensors

1 import machine
2 import utime
3

4 uart = machine.UART(1, baudrate =9600, tx=machine.Pin(4),
↪→ rx=machine.Pin(5))

5

6 while True:
7 if uart.any():
8 line = uart.readline ()
9 line = line.decode(’utf -8’)

10 if line.startswith(’$GPGGA ’):
11 print(line)
12 utime.sleep (1)

4. Next, we need to split the string into fragments. Each piece of information in the
string is separated by a comma, so we will use the split() function, which splits the
string into fragments according to the separation character given in the brackets.

1 import machine
2 import utime
3

4 uart = machine.UART(1, baudrate =9600, tx=machine.Pin(4),
↪→ rx=machine.Pin(5))

5

6 while True:
7 if uart.any():
8 line = uart.readline ()
9 line = line.decode(’utf -8’)

10 if line.startswith(’$GPGGA ’):
11 parts = line.split(’,’)
12 latitude = parts [2]
13 longitude = parts [4]
14 print(latitude+","+longitude)
15 utime.sleep (1)

Now the program is ready and can be tested. To check if we have read the correct
location, we can use google maps. Then in the search field we should enter the
latitude and longitude in the form e.g.: 52 13.30093, 21 00.41831.

7.3 Example 9: Weather station
The Serial Peripheral Interface consists of four lines:

• SPI SCK - serial clock, which allows to synchronize devices,
• SPI TX (formerly called MOSI - Master Output Slave Input) - line, which

transmits bits from master device to all slave devices,
• SPI RX (formerly called MISO - Master Input Slave Output) - line, which

transmits bits from slave devices to master device,
• SPI CS (Chip select) - line, which activate communication with chosen slave

device. The slave device starts to listen and respond when a low value is set on
its CS line. This line is sometimes called Slave select and then marked as SS.

7.3 Example 9: Weather station 55

To point that active state is low in line name frequently a line above the text is
placed, like SS or CS.

The schematic connection between devices (block diagram) is shown in Fig. 7.8.
The master is only one and this device receives information from slave devices on
demand. The master device generates the clock signal, which will synchronize all
devices. It is possible to connect many slave devices (e.g. sensors) to master (e.g.
Raspberry Pi Pico board) but all slave devices need to have separate SS/CS lines. It
is worth to mention that SPI is full-duplex bus. It means that data can be transmitted
and received by device in the same time.

Figure 7.8: The schematic connection between devices using SPI bus. Source: https:
//forbot.pl/blog/kurs-stm32-f4-10-obsluga-spi-wyswietlacz-oled-id134
75.

The dedicated library to use SPI bus is called SPI but most sensors have ready
libraries for MicroPython, which can be found in Thonny editor. This example will
show how to use ready libraries for sensors, which send data using SPI interface.

As an example, we will make a weather station based on the BME280 sensor, which
allows measuring of temperature, pressure and humidity. First, you need to install
the library. In Thonny, we can search for ready-made libraries by selecting Tools→
Manage Packages from the menu. Then, you need to enter the name of the sensor
for which you are looking library for. Since the BME280 sends data via both SPI
and I2C, you can additionally add the bus name when searching for a library, e.g. as
shown in Fig. 7.9.
Then, select one of the ready-made libraries. In this example, we will use the
bme280-upy library. Click on it and then press the Install button.
Next, you need to connect the sensor to the Raspberry Pi Pico, which has 2 indepen-
dent SPI buses: SPI0 and SPI1 (see Fig. 1.1). We will use SPI0 available on pins
GP16-GP19. Connect the sensor according to Fig. 7.11.
When installing the bme280-upy library (see Fig. 7.10), basic information about the
library is provided along with links to the repository and the PyPI page.

https://forbot.pl/blog/kurs-stm32-f4-10-obsluga-spi-wyswietlacz-oled-id13475
https://forbot.pl/blog/kurs-stm32-f4-10-obsluga-spi-wyswietlacz-oled-id13475
https://forbot.pl/blog/kurs-stm32-f4-10-obsluga-spi-wyswietlacz-oled-id13475

56 Chapter 7. Sensors

Figure 7.9: Searching a library for BME280 sensor.

Figure 7.10: Information about bme280-upy library.

Figure 7.11: Connecting the electronic circuit from example 9.

7.4 Example 10: Indoor air quality measurement 57

Open the PyPI page and note that usually the library creator provides an example of
how to use the library along with other necessary information.

Let’s create a program that reads temperature, pressure and humidity from sensor,
based on the example from the PyPI page of bme280-upy library. To do this, follow
these steps:

a. First, add the machine and bme280 libraries:

1 import machine
2 import bme280

b. Then you need to configure the sensor by specifying which bus you will use
for communication and if it is SPI, you should also specify the CS pin that was
used:

1 import machine
2 import bme280
3

4 bme = bme280.BME280(spiBus=0, spiCS =17)

c. Then you need to read the data from the sensor, which returns the temperature
in degrees Celsius. In the case of humidity, you need to multiply the result by
100 to get a result in percent and the pressure should be divided by 100 to get a
result in hPa:

1 import machine
2 import bme280
3

4 bme = bme280.BME280(spiBus=0, spiCS =17)
5

6 while True:
7 temperature , humidity , pressure = bme.readForced(

↪→ filter=bme280.FILTER_2 , tempOversampling=
↪→ bme280.OVSMPL_4 , humidityOversampling=bme280
↪→ .OVSMPL_4 , pressureOversampling=bme280.
↪→ OVSMPL_4)

8 humidity = humidity *100
9 pressure = pressure /100

10 print("T="+str(temperature)+", humidity="+str(
↪→ humidity)+", pressure ="+str(pressure))

Run the program and test how it works.

7.4 Example 10: Indoor air quality measurement
The Inter-Integrated Circuit bus consists on two lines:

• SDA (Serial Data Line) is a data line, which is used to send data between
master and slave devices.

• SCL (Serial Clock Line).
Both lines are connected to VCC by pull-up resistors.

58 Chapter 7. Sensors

In this example, we will not delve into the I2C transmission protocol, but we will use
a ready-made sensor library. Note in Fig. 1.1 that we have two I2C buses (marked as
I2C0 and I2C1) led out on several pins.
As an example, we will create a program to read air quality parameters in a room
such as: Air Quality Index, CO2 concentration (eC02) and total volatile organic
compounds (TVOC) concentration. For this purpose, we will use the DFROBOT
ENS160 Air Quality Sensor. The sensor should be connected to the Raspberry Pi
according to table no. 7.1.

ENS160 sensor Raspberry Pi Pico W
3V3 3V3
GND GND
SCL GP15
SDA GP14

Table 7.1: Connection of DFROBOT ENS160 sensor to Raspberry Pi Pico W.

This time, we will not find a ready-made library in the Thonny editor package
manager. What to do in such a case? You can search for a ready-made library on the
Internet and download it, e.g. from github. In this example, we will use the repository
https://github.com/TimHanewich/Air-Quality-IoT/tree/master . To
use the ready library shared on github, you need to download its sources by clicking
on the Code button and selecting Download ZIP as shown in Fig. 7.12.

Figure 7.12: Downloading the library from the github repository.

Then you need to unpack the zip file to the folder. Go to Thonny and connect to the
Raspberry Pi Pico board and then select VIEW → Files in the top panel. Then on
the left side we will have a preview of the directories on the computer and below the
content of the Raspberry Pi Pico board. Copy the ENS160 library (src/ENS160.py)
to the Raspberry Pi Pico as shown in Fig. 7.13.
Usually, in the downloaded repository there is an example of how to use the library.
In this case, we will also find an example called main.py but it will contain much

https://github.com/TimHanewich/Air-Quality-IoT/tree/master

7.4 Example 10: Indoor air quality measurement 59

Figure 7.13: Installing the downloaded library onto the Raspberry Pi Pico board.

more information than we need (connection to the AHT21 sensor and connection
to Wi-Fi). Open the main.py file and remove unnecessary elements, the program
should then looks like this:

1 import machine
2 import utime
3 import ENS160
4

5 # set up
6 print("Setting up ENS160")
7 i2c = machine.I2C(1, sda=machine.Pin (14), scl=machine.Pin

↪→ (15))
8 ens = ENS160.ENS160(i2c)
9 ens.reset()

10 utime.sleep (0.5)
11 ens.operating_mode = 2
12 utime.sleep (2.0)
13

14 while True:
15 # take reading from ENS160
16 print("Taking ENS160 measurements ... ")
17 aqi = ens.AQI
18 eco2 = ens.CO2
19 tvoc = ens.TVOC
20 print("AQI: " + str(aqi) + ", ECO2: " + str(eco2) + ",

↪→ TVOC: " + str(tvoc))

60 Chapter 7. Sensors

21 utime.sleep (1)

Run the program and test it. How to interpret the read data? Just familiarize yourself
with the tables in the sensor documentation (see Fig. 7.14, 7.15, 7.16).

Figure 7.14: AQI Reference.

Figure 7.15: eC02 Concentration Reference.

Figure 7.16: TVOC Reference.

7.5 Example 11: Temperature measurement using external A/D converter61

7.5 Example 11: Temperature measurement using
external A/D converter
In this example we will learn how to read the voltage value from an analog-to-
digital converter (ADC). Up to now we have been using the built-in analog-to-digital
converter, which is 12 bit (resolution of about 800 µV). If we want better accuracy,
we can use an external converter, e.g. ADS1115 (16 bit - resolution of about 76 µV).
In this example we will connect the LM35 temperature sensor to the ADS1115
converter according to Fig. 7.17.

Figure 7.17: Connecting the electronic circuit from example 11.

In the case of the ADS1115 converter, we will not use a ready-made library that
could be found on Github, but we will write our own library. Why? The last two
examples showed how to use the SPI and I2C buses with ready-made libraries and
we did not delve into the data transmission protocol. Now we will not use ready-
made libraries to show how to communicate with a converter or another sensor
with generic communication interface library (which is available out of the box in
MicroPython for Raspberry Pi Pico). First, you should start by finding a datasheet
for the ADS1115 converter on the Internet (https://www.ti.com/lit/ds/syml
ink/ads1115.pdf).
Then you need to find three things in the documentation:

• writing protocol
• reading protocol
• register addresses along with the values that need to be sent to them to set the

given parameters.
This is a general diagram of what you need to do, and in more detail:

a. Scan what devices are connected to the I2C bus to find the A/D converter
address. To do this, first configure the I2C buses using the machine.I2C()
function, which takes the I2C bus number as the first argument (0 for I2C0 or 1
for I2C1 - the numbers are in Fig. 1.1. In our case, it will be I2C1). The second
argument is the I2C bus clock frequency. The third and fourth arguments are
the pins that were used to connect SDA and SCL.

https://www.ti.com/lit/ds/symlink/ads1115.pdf
https://www.ti.com/lit/ds/symlink/ads1115.pdf

62 Chapter 7. Sensors

1 import machine
2 import utime
3

4 i2c = machine.I2C(1, freq =400000 , scl=machine.Pin (15),
↪→ sda=machine.Pin (14))

b. Next, we use the scan() function, which returns the addresses of devices
connected to the I2C bus in the form of a list. Then we read the values from
the list using a for loop. To display the data in hexadecimal code, which is how
addresses are usually written, we use the hex function, which converts decimal
values to hexadecimal:

1 import machine
2 import utime
3

4 i2c = machine.I2C(1, freq =400000 , scl=machine.Pin (15),
↪→ sda=machine.Pin (14))

5 devices = i2c.scan()
6 for device in devices:
7 print(hex(device))

c. Run the code and then save the read address to the variable ADS1115_I2C_ADDRESS:

1 import machine
2 import utime
3

4 i2c = machine.I2C(1, freq =400000 , scl=machine.Pin (15),
↪→ sda=machine.Pin (14))

5 devices = i2c.scan()
6 for device in devices:
7 print(hex(device))
8

9 ADS1115_I2C_ADDRESS = 0x48

Tip 7.5.1

You can check obtained address of the ADS1115 A/D converter with
table 7.2 of the ADS1115 datasheet. The hexadecimal value 0x48 is
0b1001000 in binary format. You can use: print(bin(device)) in your
program.

d. Then you need to find the addresses of the registers inside the ADC, where the
configuration and the values measured by the ADC are stored. The addresses
can be found in the sensor documentation in Table 6 as shown in Fig. 7.18.
Notice, that in this table, address pointer register is described with individual
bits. Single byte has 8 bits [7:0]. Bits from 7 (oldest) to 2 are reserved and you
should always write 0 to them. Bits from 1 to 0 are important and we have 4
addresses, where we only use the ’00’ and ’01’ addresses.

Pass the read addresses to variables in the program.

7.5 Example 11: Temperature measurement using external A/D converter63

Figure 7.18: Table 6 from datasheet. Source: https://www.ti.com/lit/ds/symlink/
ads1115.pdf

1 import machine
2 import utime
3

4 i2c = machine.I2C(1, freq =400000 , scl=machine.Pin (15),
↪→ sda=machine.Pin (14))

5 devices = i2c.scan()
6 for device in devices:
7 print(hex(device))
8

9 ADS1115_I2C_ADDRESS = 0x48
10 ADS1115_CONVERSION_REG = 0x00
11 ADS1115_CONFIG_REG = 0x01

e. Then, you need to look for information on what parameters of the ADC can be
set and what values should be sent to the config register for this purpose. All
this data is in Table 8 (see Fig. 7.19 and 7.20)) and the letter h designations
indicate values written in hexadecimal code, e.g. 1h=0x01, which must be set
on individual bits of the 16-bit configuration register. In this example, we will
perform a single measurement from channel 0 in the range of ±4.096V. We
will not use a comparator. The necessary values have been written down for
the variables:

1 import machine
2 import utime
3

4 i2c = machine.I2C(1, freq =400000 , scl=machine.Pin (15),
↪→ sda=machine.Pin (14))

5 devices = i2c.scan()
6 for device in devices:
7 print(hex(device))
8

9 ADS1115_I2C_ADDRESS = 0x48
10 ADS1115_CONVERSION_REG = 0x00
11 ADS1115_CONFIG_REG = 0x01
12

13 ADS1115_CONFIG_OS_SINGLE = 0x8000 # Start a single
↪→ conversion

14 ADS1115_CONFIG_MUX_AIN0 = 0x4000 #AIN0 Chain (Single -
↪→ ended channel)

15 ADS1115_CONFIG_GAIN = 0x0200 #Gain amplifier + -4.096V

https://www.ti.com/lit/ds/symlink/ads1115.pdf
https://www.ti.com/lit/ds/symlink/ads1115.pdf

64 Chapter 7. Sensors

16 ADS1115_CONFIG_MODE_SINGLE = 0x0100 #Single -shot mode
17 ADS1115_CONFIG_DR_128SPS = 0x0080 #Data rate = 128

↪→ SPS
18 ADS1115_CONFIG_COMP_DISABLED = 0x0003 #disable

↪→ comparator

Figure 7.19: Config register field description - part 1. Source: https://www.ti.com/l
it/ds/symlink/ads1115.pdf

https://www.ti.com/lit/ds/symlink/ads1115.pdf
https://www.ti.com/lit/ds/symlink/ads1115.pdf

7.5 Example 11: Temperature measurement using external A/D converter65

Figure 7.20: Config register field description - part 2. Source: https://www.ti.com/l
it/ds/symlink/ads1115.pdf

f. In the next step we will combine all set bits into one 16 bit value to send it to
the configuration register:

1 import machine
2 import utime
3

4 i2c = machine.I2C(1, freq =400000 , scl=machine.Pin (15),
↪→ sda=machine.Pin (14))

5 devices = i2c.scan()
6 for device in devices:
7 print(hex(device))
8

9 ADS1115_I2C_ADDRESS = 0x48
10 ADS1115_CONVERSION_REG = 0x00
11 ADS1115_CONFIG_REG = 0x01
12

13 ADS1115_CONFIG_OS_SINGLE = 0x8000
14 ADS1115_CONFIG_MUX_AIN0 = 0x4000
15 ADS1115_CONFIG_GAIN = 0x0200
16 ADS1115_CONFIG_MODE_SINGLE = 0x0100
17 ADS1115_CONFIG_DR_128SPS = 0x0080
18 ADS1115_CONFIG_COMP_DISABLED = 0x0003
19

20 ADS1115_CONFIG = (
21 ADS1115_CONFIG_OS_SINGLE
22 | ADS1115_CONFIG_MUX_AIN0

https://www.ti.com/lit/ds/symlink/ads1115.pdf
https://www.ti.com/lit/ds/symlink/ads1115.pdf

66 Chapter 7. Sensors

23 | ADS1115_CONFIG_GAIN
24 | ADS1115_CONFIG_MODE_SINGLE
25 | ADS1115_CONFIG_DR_128SPS
26 | ADS1115_CONFIG_COMP_DISABLED
27)

g. In the next step, we will create the function for sending our value to the
register. To do this, we need to see what the communication protocol looks
like. According to the documentation (see Fig. 7.21), first you need to send the
device address (ADC I2C address), then the register address (e.g. configuration)
and then the data bytes. The ADS1115 converter is 16 bits device, and first you
need to send the 8 oldest bits (designation: D15-D8) and then the 8 youngest
bits (designation: D7-D0). This is called Big-endian. Usually in our computer
memory values are stored in Little-endian configuration which is opposite to
this. We will have to deal with this. It will be most convenient to make function
for sending data and inside a 4-element array with the data that needs to be sent
(device address, register address, oldest bits, youngest bits). In the array, we
will store data in the form of bytes, hence we will use the bytearray() function,
which creates an array with data stored in the form of bytes.

Figure 7.21: Timing diagram from writing. Source: https://www.ti.com/lit/ds/sy
mlink/ads1115.pdf

1 import machine
2 ...
3

4 ADS1115_CONFIG = (
5 ADS1115_CONFIG_OS_SINGLE
6 | ADS1115_CONFIG_MUX_AIN0
7 | ADS1115_CONFIG_GAIN
8 | ADS1115_CONFIG_MODE_SINGLE
9 | ADS1115_CONFIG_DR_128SPS

10 | ADS1115_CONFIG_COMP_DISABLED

https://www.ti.com/lit/ds/symlink/ads1115.pdf
https://www.ti.com/lit/ds/symlink/ads1115.pdf

7.5 Example 11: Temperature measurement using external A/D converter67

11)
12

13 def write_ads1115_register(register , value):
14 data = bytearray ([register , (value >> 8) & 0xFF ,

↪→ value & 0xFF])

In this snippet above, when we create a bytearray, you may notice two unknown
entries:

• (value >> 8) - this is an operation of shifting 8 bits to the right, i.e. when
the data is 16 bits, e.g. 1010 1010 0011 0011, the result will be 0000 0000
1010 1010. So the 8 older bits will jump to the place of the 8 younger bits,
and instead of them there should be only zeros.

• value & 0xFF - this is a logical AND operation, the result of which will be
an unchanged 16-bit value. Why such an operation? If the value variable
contained something more than just the 16 bits that interest us, then we get
rid of the rest of the information and pass only 16 bits. In Python, which
is dynamic language, we cannot be sure, what value type was passed. This
could be 32-bit value with some higher bits set and shift operation could
bring bits to 16-bit field. So to be on the safe side it is better to properly
mask the value with AND boolean operation.

h. The next step is to send data from the table to the ADC via the I2C bus:

1 import machine
2 ...
3

4 ADS1115_CONFIG = (
5 ADS1115_CONFIG_OS_SINGLE
6 | ADS1115_CONFIG_MUX_AIN0
7 | ADS1115_CONFIG_GAIN
8 | ADS1115_CONFIG_MODE_SINGLE
9 | ADS1115_CONFIG_DR_128SPS

10 | ADS1115_CONFIG_COMP_DISABLED
11)
12

13 def write_ads1115_register(register , value):
14 data = bytearray ([register , (value >> 8) & 0xFF ,

↪→ value & 0xFF])
15 i2c.writeto(ADS1115_I2C_ADDRESS , data)

i. We already know how to send data. It’s time to create function for reading data.
To do this, we need to find information about the data reading protocol in the
datasheet (see Fig. 7.22). Reading data is done in two steps. The first step is
to send the ADC I2C address and the register address (by setting the Address
Pointer Register) from which we want to read data (red rectangles in Fig. 7.22).
The second step is to read two bytes of data from the ADC address (dark blue
rectangles in Fig. 7.22). So let’s create a function that will read data from the
register:

68 Chapter 7. Sensors

Figure 7.22: Timing diagram from reading. Source: https://www.ti.com/lit/ds/sy
mlink/ads1115.pdf

1 import machine
2 ...
3

4 ADS1115_CONFIG = (
5 ADS1115_CONFIG_OS_SINGLE
6 | ADS1115_CONFIG_MUX_AIN0
7 | ADS1115_CONFIG_GAIN
8 | ADS1115_CONFIG_MODE_SINGLE
9 | ADS1115_CONFIG_DR_128SPS

10 | ADS1115_CONFIG_COMP_DISABLED
11)
12

13 def write_ads1115_register(register , value):
14 data = bytearray ([register , (value >> 8) & 0xFF ,

↪→ value & 0xFF])
15 i2c.writeto(ADS1115_I2C_ADDRESS , data)
16

17 def read_ads1115_register(register , num_bytes):

https://www.ti.com/lit/ds/symlink/ads1115.pdf
https://www.ti.com/lit/ds/symlink/ads1115.pdf

7.5 Example 11: Temperature measurement using external A/D converter69

18 i2c.writeto(ADS1115_I2C_ADDRESS , bytearray ([
↪→ register]))

19 return i2c.readfrom(ADS1115_I2C_ADDRESS , num_bytes
↪→)

j. We already have functions for reading and writing data via the I2C bus. Now
let’s create a function in which we will configure the AD converter and read data
from it and then convert it to voltage. Here we will use the from_bytes() func-
tion, which converts values from individual bytes form to decimal value. Notice,
that we need to specify how bytes are arranged in memory in from_bytes()
function. Because these were read as Big-endian, we use ’big’ specifier.

1 import machine
2 ...
3

4 def read_ads1115_register(register , num_bytes):
5 i2c.writeto(ADS1115_I2C_ADDRESS , bytearray ([

↪→ register]))
6 return i2c.readfrom(ADS1115_I2C_ADDRESS , num_bytes

↪→)
7

8 def read_adc ():
9 #Sending configuration to configuration register

10 write_ads1115_register(ADS1115_CONFIG_REG ,
↪→ ADS1115_CONFIG)

11

12 #Wait for measurement to finish
13 utime.sleep (0.01)
14

15 #Reading conversion value
16 result = read_ads1115_register(

↪→ ADS1115_CONVERSION_REG , 2)
17 raw_value = int.from_bytes(result , ’big’)
18 if raw_value >= 0x8000: #Correction for negative

↪→ numbers
19 raw_value -= 0x10000
20

21 #Convert value to voltage
22 voltage = raw_value * (4.096 / 32768) #Range

↪→ + -4.096V/max value
23 return voltage

k. Now let’s add the main loop in which we will read the voltage value and convert
it to temperature (multiplication by 100 is according to the documentation for
the LM35 temperature sensor):

1 import machine
2 import utime
3

4 i2c = machine.I2C(1, freq =400000 , scl=machine.Pin (15),
↪→ sda=machine.Pin (14))

5 devices = i2c.scan()

70 Chapter 7. Sensors

6 for device in devices:
7 print(hex(device))
8

9 ADS1115_I2C_ADDRESS = 0x48
10 ADS1115_CONVERSION_REG = 0x00
11 ADS1115_CONFIG_REG = 0x01
12

13 ADS1115_CONFIG_OS_SINGLE = 0x8000
14 ADS1115_CONFIG_MUX_AIN0 = 0x4000
15 ADS1115_CONFIG_GAIN = 0x0200
16 ADS1115_CONFIG_MODE_SINGLE = 0x0100
17 ADS1115_CONFIG_DR_128SPS = 0x0080
18 ADS1115_CONFIG_COMP_DISABLED = 0x0003
19

20 ADS1115_CONFIG = (
21 ADS1115_CONFIG_OS_SINGLE
22 | ADS1115_CONFIG_MUX_AIN0
23 | ADS1115_CONFIG_GAIN
24 | ADS1115_CONFIG_MODE_SINGLE
25 | ADS1115_CONFIG_DR_128SPS
26 | ADS1115_CONFIG_COMP_DISABLED
27)
28

29 def write_ads1115_register(register , value):
30 data = bytearray ([register , (value >> 8) & 0xFF ,

↪→ value & 0xFF])
31 i2c.writeto(ADS1115_I2C_ADDRESS , data)
32

33 def read_ads1115_register(register , num_bytes):
34 i2c.writeto(ADS1115_I2C_ADDRESS , bytearray ([

↪→ register]))
35 return i2c.readfrom(ADS1115_I2C_ADDRESS , num_bytes

↪→)
36

37 def read_adc ():
38 #Sending configuration to configuration register
39 write_ads1115_register(ADS1115_CONFIG_REG ,

↪→ ADS1115_CONFIG)
40

41 #Wait for measurement to finish
42 utime.sleep (0.01)
43

44 #Reading conversion value
45 result = read_ads1115_register(

↪→ ADS1115_CONVERSION_REG , 2)
46 raw_value = int.from_bytes(result , ’big’)
47 if raw_value >= 0x8000: #Correction for negative

↪→ numbers
48 raw_value -= 0x10000
49

7.6 Example 12: Temperature measurement using 1-wire bus 71

50 #Convert value to voltage
51 voltage = raw_value * (4.096 / 32768) #Range

↪→ + -4.096V/max value
52 return voltage
53

54 while True:
55 voltage = read_adc ()
56 temp = voltage *100
57 print("T="+str(temp))
58 utime.sleep (1)

The code is ready. Test it out.

7.6 Example 12: Temperature measurement using
1-wire bus
The 1-wire interface was developed by Dallas Semiconductor company. This bus
consists of only one line. This interface works similar to I2C bus but the 0 and 1 bits
are defined by time duration of low signal. The 1-wire bus works slower than I2C.
Maximal speed is 16 kbit/s.
In this example, we will read the temperature from the DS18B20 temperature sensor
via the 1-wire bus and display the read temperature on an LCD display with an I2C
converter (sometimes the converter is purchased separately for the display). To do
this, connect the system as in Fig. 7.23.

Figure 7.23: Connecting the electronic circuit from example 12.

Now let’s write a program that will read data from the DS18B20 sensor and display
it on the display. To do this, follow these steps:

a. Install the onwire library and ds18x20 using the package manager in the Thonny
editor (see Fig. 7.24 and 7.25).

72 Chapter 7. Sensors

Figure 7.24: Installation of onewire library.

Figure 7.25: Installation of DS18x20 library.

b. Now let’s add the necessary libraries:

1 import machine
2 import onewire
3 import ds18x20
4 import utime

c. Next, you need to specify which GPIO pin will serve as the 1-wire bus. To
do this, use the onewire.OneWire(pin number) function. The next step is to
configure the DS18B20 sensor, i.e. call the function: ds18x20.DS18X20(),
which takes a onewire class object as an argument:

7.6 Example 12: Temperature measurement using 1-wire bus 73

1 import machine
2 import onewire
3 import ds18x20
4 import utime
5

6 one_wire_bus = onewire.OneWire(machine.Pin (13))
7 ds18b20_sensor = ds18x20.DS18X20(one_wire_bus)

d. In the next step, you need to determine the address of the DS18B20 sensor
that we connected to the 1-wire bus. This can be done automatically using the
scan() function:

1 import machine
2 import onewire
3 import ds18x20
4 import utime
5

6 one_wire_bus = onewire.OneWire(machine.Pin (13))
7 ds18b20_sensor = ds18x20.DS18X20(one_wire_bus)
8 device_addr = ds18b20_sensor.scan()

e. Then you should give the sensor a command to measure the temperature (con-
vert_temp() function) and then wait about 750 ms until it measures according
to the documentation for the DS18B20 sensor. Then you should read the
measured temperature value in Celsius using the read_temp() function, which
takes the sensor address as an argument. Since the scan() function returns an
array with addresses, you should extract the first element of the array. Arrays
in Python are numbered from 0 and to extract a given fragment of the array,
you should enter array_name[index]:

1 import machine
2 import onewire
3 import ds18x20
4 import utime
5

6 one_wire_bus = onewire.OneWire(machine.Pin (13))
7 ds18b20_sensor = ds18x20.DS18X20(one_wire_bus)
8 device_addr = ds18b20_sensor.scan()
9

10 while True:
11 ds18b20_sensor.convert_temp ()
12 utime.sleep (0.75)
13

14 temp=ds18b20_sensor.read_temp(device_addr [0])
15 print("T="+str(temp))

f. You can now test the program. If you read the temperature correctly, we can
move on to the LCD display. First, download two files: lcd_api.py (https:
//github.com/T-622/RPI-PICO-I2C-LCD/blob/main/lcd_api.py) and
i2c_lcd.py (https://github.com/T-622/RPI-PICO-I2C-LCD/blob/m
ain/pico_i2c_lcd.py) and upload them to Raspbery Pi Pico as shown in

https://github.com/T-622/RPI-PICO-I2C-LCD/blob/main/lcd_api.py
https://github.com/T-622/RPI-PICO-I2C-LCD/blob/main/lcd_api.py
https://github.com/T-622/RPI-PICO-I2C-LCD/blob/main/pico_i2c_lcd.py
https://github.com/T-622/RPI-PICO-I2C-LCD/blob/main/pico_i2c_lcd.py

74 Chapter 7. Sensors

Fig. 7.26.

Figure 7.26: Installing libraries for the LCD display

g. Now let’s add the necessary libraries:

1 import machine
2 import onewire
3 import ds18x20
4 import utime
5 from lcd_api import LcdApi
6 from pico_i2c_lcd import I2cLcd
7

8 one_wire_bus = onewire.OneWire(machine.Pin (13))
9 ds18b20_sensor = ds18x20.DS18X20(one_wire_bus)

10 device_addr = ds18b20_sensor.scan()
11 ...

h. Next, let’s configure the I2C bus and scan it to find the LCD display address.
Run the program and read the value.

1 import machine
2 import onewire
3 import ds18x20
4 import utime
5 from lcd_api import LcdApi
6 from pico_i2c_lcd import I2cLcd

7.6 Example 12: Temperature measurement using 1-wire bus 75

7

8 one_wire_bus = onewire.OneWire(machine.Pin (13))
9 ds18b20_sensor = ds18x20.DS18X20(one_wire_bus)

10 device_addr = ds18b20_sensor.scan()
11

12 i2c = machine.I2C(0, sda = machine.Pin (16), scl =
↪→ machine.Pin (17), freq =400000)

13 print("LCD screen address="+str(i2c.scan()))
14 ...

i. Let’s save the read LCD display address to a variable and create variables to
store the display dimensions (number of rows and columns):

1 import machine
2 import onewire
3 import ds18x20
4 import utime
5 from lcd_api import LcdApi
6 from pico_i2c_lcd import I2cLcd
7

8 one_wire_bus = onewire.OneWire(machine.Pin (13))
9 ds18b20_sensor = ds18x20.DS18X20(one_wire_bus)

10 device_addr = ds18b20_sensor.scan()
11

12 i2c = machine.I2C(0, sda = machine.Pin (16), scl =
↪→ machine.Pin (17), freq =400000)

13 print("LCD screen address="+str(i2c.scan()))
14

15 I2C_ADDR =63
16 I2C_NUM_ROWS = 2
17 I2C_NUM_COLS = 16
18 ...

j. Let’s initialize the LCD display and then wait 1s. Then let’s clear the display,
position the cursor at the beginning and display the welcome text:

1 import machine
2 import onewire
3 import ds18x20
4 import utime
5 from lcd_api import LcdApi
6 from pico_i2c_lcd import I2cLcd
7

8 one_wire_bus = onewire.OneWire(machine.Pin (13))
9 ds18b20_sensor = ds18x20.DS18X20(one_wire_bus)

10 device_addr = ds18b20_sensor.scan()
11

12 i2c = machine.I2C(0, sda = machine.Pin (16), scl =
↪→ machine.Pin (17), freq =400000)

13 print("LCD screen address="+str(i2c.scan()))
14

15 I2C_ADDR =63

76 Chapter 7. Sensors

16 I2C_NUM_ROWS = 2
17 I2C_NUM_COLS = 16
18

19 lcd = I2cLcd(i2c , I2C_ADDR , I2C_NUM_ROWS , I2C_NUM_COLS
↪→)

20 utime.sleep (1)
21

22 lcd.clear()
23 lcd.move_to (0,0)
24 lcd.putstr("Hello")
25 ...

k. The last step is to display the temperature on the next row of the LCD display
after measuring the temperature:

1 import machine
2 import onewire
3 import ds18x20
4 import utime
5 from lcd_api import LcdApi
6 from pico_i2c_lcd import I2cLcd
7

8 one_wire_bus = onewire.OneWire(machine.Pin (13))
9 ds18b20_sensor = ds18x20.DS18X20(one_wire_bus)

10 device_addr = ds18b20_sensor.scan()
11

12 i2c = machine.I2C(0, sda = machine.Pin (16), scl =
↪→ machine.Pin (17), freq =400000)

13 print("LCD screen address="+str(i2c.scan()))
14

15 I2C_ADDR =63
16 I2C_NUM_ROWS = 2
17 I2C_NUM_COLS = 16
18

19 lcd = I2cLcd(i2c , I2C_ADDR , I2C_NUM_ROWS , I2C_NUM_COLS
↪→)

20 utime.sleep (1)
21

22 lcd.clear()
23 lcd.move_to (0,0)
24 lcd.putstr("Hello")
25

26 while True:
27 ds18b20_sensor.convert_temp ()
28 utime.sleep (0.75)
29

30 temp=ds18b20_sensor.read_temp(device_addr [0])
31 print("T="+str(temp))
32

33 lcd.move_to (0,1)
34 lcd.putstr("T="+str(temp)+" C")

7.6 Example 12: Temperature measurement using 1-wire bus 77

The program is ready and can be tested.

Tip 7.6.1

If you would like to use the LCD display without an I2C converter, you
can use the library available here: https://github.com/gusandrio
li/liquid-crystal-pico.

https://github.com/gusandrioli/liquid-crystal-pico
https://github.com/gusandrioli/liquid-crystal-pico

8. Actuators

Actuators are elements making a movement (executive elements). The basic actuators are:
servo, stepper motor and DC motor.

8.1 Example 13: Servo motor
The servo is a motor with a gear that rotates by a given angle, usually in the range of
(0;180)o or (-90;90)o. The construction of the servo is shown in Fig. 8.1. The servo can
be connected directly to the Raspberry Pi Pico board. The three wires are brought out of
the servo. The middle one (usually red) should be connected to the power supply (+5V =
VBUS). The black one is GND and the last wire (usually light colored: white/yellow) is
the control that should be connected to the PWM pin.

Figure 8.1: Principle of operation of a servomechanism. Source: https://ai.thestem
pedia.com/docs/quarky/quarky-technical-specifications/servo-motor-wi
th-quarky/.

https://ai.thestempedia.com/docs/quarky/quarky-technical-specifications/servo-motor-with-quarky/
https://ai.thestempedia.com/docs/quarky/quarky-technical-specifications/servo-motor-with-quarky/
https://ai.thestempedia.com/docs/quarky/quarky-technical-specifications/servo-motor-with-quarky/

8.1 Example 13: Servo motor 79

The servo control is based on the PWM signal. The controller, located in the servo,
reads the PWM signal and on its basis determines the angle by which the gear is to rotate.
The idea of the servo operation is shown in Fig. 8.2.

Figure 8.2: Principle of servo control. Source: https://howtomechatronics.com/wp
-content/uploads/2018/03/RC-Servo-Motor-Control-Signal.png.

Let’s create a program that will rotate the servo from minimum to middle position and
then to maximum and back. To do this, let’s first connect the system as shown in Fig. 8.3
(red wire- VBUS, yellow wire- GP18, black wire- GND).

Figure 8.3: Connecting the electronic circuit from example 13.

https://howtomechatronics.com/wp-content/uploads/2018/03/RC-Servo-Motor-Control-Signal.png
https://howtomechatronics.com/wp-content/uploads/2018/03/RC-Servo-Motor-Control-Signal.png

80 Chapter 8. Actuators

Open the Thonny editor and follow these steps:
1. Add the necessary libraries:

1 import machine
2 import utime

2. According to the documentation for the servo, the minimum position is when the
high signal lasts 0.9 ms (sometimes 0.5 ms). The middle position is when the high
signal lasts 1.5 ms and the maximum when 2.1 ms (sometimes 2.5 ms). The PWM
signal period should be 20 ms (50 Hz). Let’s create variables that will store these
values in ns:

1 import machine
2 import utime
3

4 MIN = 900000
5 MID = 1500000
6 MAX = 2100000

3. Configure the GP18 pin as PWM and set the PWM signal frequency to 50 Hz.

1 import machine
2 import utime
3

4 MIN = 900000
5 MID = 1500000
6 MAX = 2100000
7

8 pwm = machine.PWM(machine.Pin (18))
9 pwm.freq (50)

4. We will define the servo positions by setting the duty cycle. In the previous chapter,
the duty_u16() function was presented, which set the duty cycle given in the range
from 0 to 65535 (100%). It will be more convenient here to use the duty_ns()
function, which sets the duty cycle for a specified time in nanoseconds. Let’s set the
initial deflection to the middle:

1 import machine
2 import utime
3

4 MIN = 900000
5 MID = 1500000
6 MAX = 2100000
7

8 pwm = machine.PWM(machine.Pin (18))
9 pwm.freq (50)

10 pwm.duty_ns(MIN)

5. In the main loop, let’s make that the servo rotates from the minimum position through
the middle to the maximum and back every 1s:

1 import machine
2 import utime
3

8.2 Example 14: Smart ventilation 81

4 MIN = 900000
5 MID = 1500000
6 MAX = 2100000
7

8 pwm = machine.PWM(machine.Pin (18))
9 pwm.freq (50)

10 pwm.duty_ns(MIN)
11

12 while True:
13 pwm.duty_ns(MIN)
14 utime.sleep (1)
15 pwm.duty_ns(MID)
16 utime.sleep (1)
17 pwm.duty_ns(MAX)
18 utime.sleep (1)
19 pwm.duty_ns(MID)
20 utime.sleep (1)

The program is ready, test its operation.

8.2 Example 14: Smart ventilation
In this example, we will create a smart ventilation system that will consist of a Pololu
DS18B20 temperature sensor (from chapter no. 7.6) and a DC motor connected via a
DRV8835 controller to the Raspberry Pi Pico. Depending on the temperature, we will
regulate the speed of the DC motor, to which the fan blades can be connected. Let’s start
by connecting the electronic system according to the table 8.1.

DRV8835 Raspberry Pi Pico DC motor
GND GND -

VIN, VCC and MD VBUS -
O1 and O2 - two legs

VM - -
IN1 PH GP16 -
IN2 EN GP17 -

Table 8.1: Example connection of DRV8835 driver to Raspberry Pi Pico.

Now open the Thonny editor and follow these steps:
1. Let’s start by copying the program for the DS18B20 temperature sensor discussed in

chapter 7.6.

1 import machine
2 import onewire
3 import ds18x20
4 import utime
5

6 one_wire_bus = onewire.OneWire(machine.Pin (13))
7 ds18b20_sensor = ds18x20.DS18X20(one_wire_bus)
8 device_addr = ds18b20_sensor.scan()

82 Chapter 8. Actuators

9

10 while True:
11 ds18b20_sensor.convert_temp ()
12 utime.sleep (0.75)
13 temp=ds18b20_sensor.read_temp(device_addr [0])
14 print("T="+str(temp))

2. DC motor speed is controlled by Pulse Width Modulation (PWM) when using the
DRV8835 controller. To do this, let’s configure pin 17 as PWM and pin 16 as GPIO
output because it will be used to change the direction of rotation:

1 import machine
2 import onewire
3 import ds18x20
4 import utime
5

6 one_wire_bus = onewire.OneWire(machine.Pin (13))
7 ds18b20_sensor = ds18x20.DS18X20(one_wire_bus)
8 device_addr = ds18b20_sensor.scan()
9

10 DCmotor = machine.PWM(machine.Pin (17))
11 direction = machine.Pin(16, machine.Pin.OUT)
12

13 while True:
14 ds18b20_sensor.convert_temp ()
15 utime.sleep (0.75)
16 temp=ds18b20_sensor.read_temp(device_addr [0])
17 print("T="+str(temp))

3. Now let’s set the PWM signal frequency to 1 kHz and the direction of rotation (value
0 or 1):

1 import machine
2 import onewire
3 import ds18x20
4 import utime
5

6 one_wire_bus = onewire.OneWire(machine.Pin (13))
7 ds18b20_sensor = ds18x20.DS18X20(one_wire_bus)
8 device_addr = ds18b20_sensor.scan()
9

10 DCmotor = machine.PWM(machine.Pin (17))
11 direction = machine.Pin(16, machine.Pin.OUT)
12

13 DCmotor.freq (1000)
14 direction.value (0)
15

16 while True:
17 ds18b20_sensor.convert_temp ()
18 utime.sleep (0.75)
19 temp=ds18b20_sensor.read_temp(device_addr [0])
20 print("T="+str(temp))

8.2 Example 14: Smart ventilation 83

4. Now let’s create variables in which we will store the PWM signal duty cycle for
minimum and maximum speed (RPM - rotations per minute). Remember that the
duty_u16() function accepts values from 0 to 65535, so the variables should be in
these ranges. In addition, let’s create variables to store the minimum and maximum
temperature for which the ventilation should work. Let’s also create a mapping
function that will allow us to convert the temperature to the appropriate PWM duty
cycle (somewhat proportional to RPM):

1 import machine
2 import onewire
3 import ds18x20
4 import utime
5

6 one_wire_bus = onewire.OneWire(machine.Pin (13))
7 ds18b20_sensor = ds18x20.DS18X20(one_wire_bus)
8 device_addr = ds18b20_sensor.scan()
9

10 DCmotor = machine.PWM(machine.Pin (17))
11 direction = machine.Pin(16, machine.Pin.OUT)
12

13 DCmotor.freq (1000)
14 direction.value (0)
15

16 min_speed = 20000
17 max_speed = 65535
18 Tmin =22
19 Tmax =50
20

21 def map_value(x, in_min , in_max , out_min , out_max):
22 return int((x - in_min) * (out_max - out_min) / (

↪→ in_max - in_min) + out_min)
23

24

25 while True:
26 ds18b20_sensor.convert_temp ()
27 utime.sleep (0.75)
28 temp=ds18b20_sensor.read_temp(device_addr [0])
29 print("T="+str(temp))

5. The last step is to convert the temperature read from the DS18B20 sensor into
the PWM signal duty cycle that controls the engine speed so that the higher the
temperature, the faster the engine rotates the fan blades. Then we set the designated
duty cycle on PWM and correct PWM signal should be generated on PWM pin:

1 import machine
2 import onewire
3 import ds18x20
4 import utime
5

6 one_wire_bus = onewire.OneWire(machine.Pin (13))
7 ds18b20_sensor = ds18x20.DS18X20(one_wire_bus)

84 Chapter 8. Actuators

8 device_addr = ds18b20_sensor.scan()
9

10 DCmotor = machine.PWM(machine.Pin (17))
11 direction = machine.Pin(16, machine.Pin.OUT)
12

13 DCmotor.freq (1000)
14 direction.value (0)
15

16 min_speed = 20000
17 max_speed = 65535
18 Tmin =22
19 Tmax =50
20

21 def map_value(x, in_min , in_max , out_min , out_max):
22 return int((x - in_min) * (out_max - out_min) / (

↪→ in_max - in_min) + out_min)
23

24 while True:
25 ds18b20_sensor.convert_temp ()
26 utime.sleep (0.75)
27 temp=ds18b20_sensor.read_temp(device_addr [0])
28 print("T="+str(temp))
29

30 speed = map_value(temp , Tmin , Tmax , min_speed ,
↪→ max_speed)

31 DCmotor.duty_u16(speed)

The program is now ready and you can test it.

9. Wireless communication

Wireless communication can be done in several ways via radio techniques, the most popular
are: via Bluetooth, or via Wi-Fi. In this chapter, we will discuss them both. We will also
use Internet connection to the cloud service - using the Adafruit IO cloud.

9.1 Example 15: Bluetooth module
In the case of the Raspberry Pi Pico W board, we have a built-in Bluetooth module, which is
very well documented in the official datasheet: https://datasheets.raspberrypi.c
om/picow/connecting-to-the-internet-with-pico-w.pdf . Go to the "Working
with Bluetooth in MicroPython" section and there you will find an example "Creating a
temperature service peripheral". You can download the finished code from the repository:
https://github.com/raspberrypi/pico-micropython-examples/tree/mast
er/bluetooth(picow_ble_temp_sensor.py) and the necessary ble_advertising.py
library. The library should be loaded onto the Raspberry Pi Pico board and simply run
the picow_ble_temp_sensor.py example. To read the data, you can use the LightBlue
application on a smartphone with Android or iOS.

9.2 Example 16: Adafruit IO
In this example, we will send the temperature reading from the DS18B20 sensor to the
Adafruit IO cloud. There are several different clouds, but in this guide we will focus on the
cloud that we feel is the simplest and offers a lot of possibilities for creating IoT projects.

The Adafruit IO cloud uses the MQTT (Message Queuing Telemetry Transport) proto-
col, which is based on the publish/subscribe model. The idea is that client "A" publishes
information under a given topic and any other client which subscribed for this topic will
read the data published by client "A". This idea is schematically presented in Fig. 9.1.

To create a program that sends temperature to the Adafruit IO cloud, follow these steps:
1. First, you need to create a free account at https://io.adafruit.com.
2. Next, you will need to send temperature value to the cloud. To do this, you need to

create one feed. Feed is an object that stores data. To create a feed, go to the "Feed"
tab and select the "New Feed" button (see Fig. 9.2).

https://datasheets.raspberrypi.com/picow/connecting-to-the-internet-with-pico-w.pdf
https://datasheets.raspberrypi.com/picow/connecting-to-the-internet-with-pico-w.pdf
https://github.com/raspberrypi/pico-micropython-examples/tree/master/bluetooth (picow_ble_temp_sensor.py
https://github.com/raspberrypi/pico-micropython-examples/tree/master/bluetooth (picow_ble_temp_sensor.py
https://io.adafruit.com

86 Chapter 9. Wireless communication

Figure 9.1: How the MQTT protocol works. Source: https://www.akcp.com/blog/sc
aling-mqtt-network-for-better-operational-output/

Figure 9.2: Creating a feed in Adafruit IO.

3. Then a window will appear where you need to enter the feed name, e.g. Temp.
4. The next step is to create a dashboard. To do this, select the "Dashboards" tab and

then "New Dashboard" (see Fig. 9.3).

Figure 9.3: Creating a dashboard in Adafruit IO.

5. A window will pop up where you should enter the selected dashboard name. Then
on the right side, select the settings symbol and choose "Create New Block" (see
Fig. 9.4).

6. Adafruit IO has various blocks available for displaying data (text boxes, gauges,
charts, maps, etc.). In our case, let’s choose a gauge (see Fig. 9.5).

https://www.akcp.com/blog/scaling-mqtt-network-for-better-operational-output/
https://www.akcp.com/blog/scaling-mqtt-network-for-better-operational-output/

9.2 Example 16: Adafruit IO 87

Figure 9.4: Editing a dashboard in Adafruit IO.

Figure 9.5: Available blocks in Adafruit IO.

Figure 9.6: Connecting the block to the feed. in Adafruit IO.

88 Chapter 9. Wireless communication

7. Then a window will pop up asking which feed we want to connect the block to.
Select the feed you created to store the temperature values (see Fig. 9.6).

8. Now let’s go to the Thonny editor and install the umqtt.simple library from the
packages manager in the Thonny editor.

9. Now let’s return to the example of reading temperature from the DS18B20 sensor:

1 import machine
2 import onewire
3 import ds18x20
4 import utime
5

6 one_wire_bus = onewire.OneWire(machine.Pin (13))
7 ds18b20_sensor = ds18x20.DS18X20(one_wire_bus)
8 device_addr = ds18b20_sensor.scan()
9

10 while True:
11 ds18b20_sensor.convert_temp ()
12 utime.sleep (0.75)
13 temp=ds18b20_sensor.read_temp(device_addr [0])
14 print("T="+str(temp))

10. Next, add the necessary libraries:

1 import machine
2 import onewire
3 import ds18x20
4 import utime
5 import network
6 from umqtt.simple import MQTTClient
7

8 one_wire_bus = onewire.OneWire(machine.Pin (13))
9 ds18b20_sensor = ds18x20.DS18X20(one_wire_bus)

10 device_addr = ds18b20_sensor.scan()
11

12 while True:
13 ds18b20_sensor.convert_temp ()
14 utime.sleep (0.75)
15 temp=ds18b20_sensor.read_temp(device_addr [0])
16 print("T="+str(temp))

11. Add a piece of code that will allow you to connect to your Wi-Fi. Here you need to
fill sensitive data in lines 12-13. First, enter the name of your Wi-Fi (SSID - Service
Set Identifier) and then the password, so the Raspberry Pi Pico W can connect to
your Wi-Fi network. This Wi-Fi should allow connection to the Internet, because we
want to connect with Adafruit IO Cloud service:

1 import machine
2 import onewire
3 import ds18x20
4 import utime
5 import network
6 from umqtt.simple import MQTTClient

9.2 Example 16: Adafruit IO 89

7

8 one_wire_bus = onewire.OneWire(machine.Pin (13))
9 ds18b20_sensor = ds18x20.DS18X20(one_wire_bus)

10 device_addr = ds18b20_sensor.scan()
11

12 WIFI_SSID = "your_wifi_name"
13 WIFI_PASSWORD = "your_wifi_password"
14 ADAFRUIT_IO_USERNAME = "username"
15 ADAFRUIT_IO_KEY = "key"
16

17 def connect_wifi ():
18 wlan = network.WLAN(network.STA_IF)
19 wlan.active(True)
20 wlan.connect(WIFI_SSID , WIFI_PASSWORD)
21 while not wlan.isconnected ():
22 print("Connecting to Wi-Fi...")
23 utime.sleep (1)
24 print("Connected to Wi-Fi:", wlan.ifconfig ())
25

26 connect_wifi ()
27

28 while True:
29 ds18b20_sensor.convert_temp ()
30 utime.sleep (0.75)
31 temp=ds18b20_sensor.read_temp(device_addr [0])
32 print("T="+str(temp))

12. The last two parameters are credentials for access to the Adafruit IO cloud. Go back
to the Adafruit website and click the key symbol. When you do this, your Username
and Key will appear (see Fig. 9.7). Copy this data to the program to lines 14-15.

Figure 9.7: Username and key.

13. Now we will use MQTT protocol. Use the code below, changing only the feed name
in lines 30:

1 import machine
2 import onewire
3 import ds18x20
4 import utime
5 import network
6 from umqtt.simple import MQTTClient
7

90 Chapter 9. Wireless communication

8 one_wire_bus = onewire.OneWire(machine.Pin (13))
9 ds18b20_sensor = ds18x20.DS18X20(one_wire_bus)

10 device_addr = ds18b20_sensor.scan()
11

12 WIFI_SSID = "your_wifi_name"
13 WIFI_PASSWORD = "your_wifi_password"
14 ADAFRUIT_IO_USERNAME = "username"
15 ADAFRUIT_IO_KEY = "key"
16

17 def connect_wifi ():
18 wlan = network.WLAN(network.STA_IF)
19 wlan.active(True)
20 wlan.connect(WIFI_SSID , WIFI_PASSWORD)
21 while not wlan.isconnected ():
22 print("Connecting to Wi-Fi...")
23 utime.sleep (1)
24 print("Connected to Wi-Fi:", wlan.ifconfig ())
25

26 ADAFRUIT_IO_SERVER = "io.adafruit.com"
27 ADAFRUIT_IO_PORT = 1883 # Port MQTT
28 CLIENT_ID = "raspberry_pi_pico"
29

30 FEED_TEMP_LEVEL = "username/feeds/Temp"
31

32 client = MQTTClient(CLIENT_ID , ADAFRUIT_IO_SERVER ,
↪→ ADAFRUIT_IO_PORT , ADAFRUIT_IO_USERNAME ,
↪→ ADAFRUIT_IO_KEY)

33

34 def connect_mqtt ():
35 client.connect ()
36 print("Connected to Adafruit IO")
37

38 connect_wifi ()
39 connect_mqtt ()
40

41 while True:
42 ds18b20_sensor.convert_temp ()
43 utime.sleep (0.75)
44 temp=ds18b20_sensor.read_temp(device_addr [0])
45 print("T="+str(temp))

14. Now let’s add function to send data to the cloud:

1 import machine
2 import onewire
3 import ds18x20
4 import utime
5 import network
6 from umqtt.simple import MQTTClient
7

8 one_wire_bus = onewire.OneWire(machine.Pin (13))

9.2 Example 16: Adafruit IO 91

9 ds18b20_sensor = ds18x20.DS18X20(one_wire_bus)
10 device_addr = ds18b20_sensor.scan()
11

12 WIFI_SSID = "your_wifi_name"
13 WIFI_PASSWORD = "your_wifi_password"
14 ADAFRUIT_IO_USERNAME = "username"
15 ADAFRUIT_IO_KEY = "key"
16

17 def connect_wifi ():
18 wlan = network.WLAN(network.STA_IF)
19 wlan.active(True)
20 wlan.connect(WIFI_SSID , WIFI_PASSWORD)
21 while not wlan.isconnected ():
22 print("Connecting to Wi-Fi...")
23 utime.sleep (1)
24 print("Connected to Wi-Fi:", wlan.ifconfig ())
25

26 ADAFRUIT_IO_SERVER = "io.adafruit.com"
27 ADAFRUIT_IO_PORT = 1883 # Port MQTT
28 CLIENT_ID = "raspberry_pi_pico"
29

30 FEED_TEMP_LEVEL = "username/feeds/Temp"
31

32 client = MQTTClient(CLIENT_ID , ADAFRUIT_IO_SERVER ,
↪→ ADAFRUIT_IO_PORT , ADAFRUIT_IO_USERNAME ,
↪→ ADAFRUIT_IO_KEY)

33

34 def connect_mqtt ():
35 client.connect ()
36 print("Connected to Adafruit IO")
37

38 connect_wifi ()
39 connect_mqtt ()
40

41 def send_data(temp):
42 client.publish(FEED_TEMP_LEVEL , str(temp))
43 print("Temp. sent:"+str(temp))
44

45 while True:
46 ds18b20_sensor.convert_temp ()
47 utime.sleep (0.75)
48 temp=ds18b20_sensor.read_temp(device_addr [0])
49 print("T="+str(temp))

15. The last step is to call the function to send data after measuring the temperature and
sending its value to the cloud:

1 import machine
2 import onewire
3 import ds18x20
4 import utime

92 Chapter 9. Wireless communication

5 import network
6 from umqtt.simple import MQTTClient
7

8 one_wire_bus = onewire.OneWire(machine.Pin (13))
9 ds18b20_sensor = ds18x20.DS18X20(one_wire_bus)

10 device_addr = ds18b20_sensor.scan()
11

12 WIFI_SSID = "your_wifi_name"
13 WIFI_PASSWORD = "your_wifi_password"
14 ADAFRUIT_IO_USERNAME = "username"
15 ADAFRUIT_IO_KEY = "key"
16

17 def connect_wifi ():
18 wlan = network.WLAN(network.STA_IF)
19 wlan.active(True)
20 wlan.connect(WIFI_SSID , WIFI_PASSWORD)
21 while not wlan.isconnected ():
22 print("Connecting to Wi-Fi...")
23 utime.sleep (1)
24 print("Connected to Wi-Fi:", wlan.ifconfig ())
25

26 ADAFRUIT_IO_SERVER = "io.adafruit.com"
27 ADAFRUIT_IO_PORT = 1883 # Port MQTT
28 CLIENT_ID = "raspberry_pi_pico"
29 FEED_TEMP_LEVEL = "username/feeds/Temp"
30

31 client = MQTTClient(CLIENT_ID , ADAFRUIT_IO_SERVER ,
↪→ ADAFRUIT_IO_PORT , ADAFRUIT_IO_USERNAME ,
↪→ ADAFRUIT_IO_KEY)

32

33 def connect_mqtt ():
34 client.connect ()
35 print("Connected to Adafruit IO")
36

37 connect_wifi ()
38 connect_mqtt ()
39

40 def send_data(temp):
41 client.publish(FEED_TEMP_LEVEL , str(temp))
42 print("Temp. sent:"+str(temp))
43

44 while True:
45 ds18b20_sensor.convert_temp ()
46 utime.sleep (0.75)
47 temp=ds18b20_sensor.read_temp(device_addr [0])
48 print("T="+str(temp))
49 send_data(temp)

The program is ready. Run it and go to Adafruit IO to the created dashboard. You
should see the measured temperature on the indicator.

9.2 Example 16: Adafruit IO 93

This was the last example in this guide. We hope that the presented examples allowed
you to get to know the Raspberry Pi Pico W board. We encourage you to continue
developing and looking for interesting examples of using the Raspberry Pi Pico W
board both within the IoT4schools project (https://www.iot.fizyka.pw.edu.pl)
and elsewhere.

https://www.iot.fizyka.pw.edu.pl

	1 Introduction
	1.1 Raspberry Pi Pico board
	1.2 Installation

	2 Basic electronic components
	3 Introduction to MicroPython language
	4 The digital signals
	4.1 Example 1: blinking LED project
	4.2 Example 2: LED turned on/off with push button
	4.3 Example 3: Light switched on by a motion sensor
	4.4 Pulse Width Modulation (PWM)

	5 The analog signals
	5.1 Example 5: temperature measurement

	6 Interrupts
	6.1 Example 6: Sound signals at traffic lights

	7 Sensors
	7.1 Example 7: parking sensor
	7.2 Example 8: GPS module
	7.3 Example 9: Weather station
	7.4 Example 10: Indoor air quality measurement
	7.5 Example 11: Temperature measurement using external A/D converter
	7.6 Example 12: Temperature measurement using 1-wire bus

	8 Actuators
	8.1 Example 13: Servo motor
	8.2 Example 14: Smart ventilation

	9 Wireless communication
	9.1 Example 15: Bluetooth module
	9.2 Example 16: Adafruit IO

